Advertisement

Mechanisms of Resistance to Targeted Tyrosine Kinase Inhibitors

  • Stacey J. Baker
  • E. Premkumar ReddyEmail author
Chapter

Abstract

The recent surge in the development of targeted kinase inhibitors as therapies for cancer was spurred from the success of imatinib (Gleevec®, STI571) for the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia. This drug, for the first time, showed that a small molecule could be designed to inhibit an oncogenic tyrosine kinase (BCR-ABL) that was responsible for inducing malignant transformation of a particular cell type. Targeted inhibitors against the epidermal growth factor receptor (EGFR), gefitinib and erlotinib, soon followed for the treatment of certain forms of lung cancer. While these drugs can effectively treat disease without many of the unwanted side effects associated with more traditional chemotherapeutic agents, it has become clear that some patients become resistant to these agents due to the development of mutations in the kinase domains of their target proteins. This review discusses the development of these inhibitors as well as the mechanisms associated with resistance to them. Second-generation kinase inhibitors aimed at overriding resistance to these therapies are also discussed.

Keywords

Kinase inhibitor Targeted therapy Resistance 

Notes

Acknowledgments

We are thankful to M.V. Ramana Reddy for preparing Fig. 4.1.

References

  1. Anderson SM, Hayward WS, Neel BG, Hanafusa H. 1980. Avian erythroblastosis virus produces two mRNAs. J. Virol. 36, 676–683.PubMedGoogle Scholar
  2. Apperley J.F. 2007. Part II: management of resistance to imatinib in chronic myeloid leukemia. Lancet Oncol. 8: 1116–1128.PubMedGoogle Scholar
  3. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, Ladanyi M, Miller VA, Pao W. 2006. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 12: 6494–6501.PubMedGoogle Scholar
  4. Bareschino MA, Schettino C, Troiani T, Martinelli E, Morgillo F, Ciardiello F. 2007. Erlotinib in cancer treatment. Annal. Oncol. 18: vi35-vi41.Google Scholar
  5. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W. 2007. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA 104: 20932–20937.Google Scholar
  6. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. 1994. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood. 83, 2038–2044.PubMedGoogle Scholar
  7. Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R, Sharma SV, Brannigan BW, Mohapatra G, Settleman J, Haber DA. 2005. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat. Genet. 37: 1315–1316.PubMedGoogle Scholar
  8. Burchert A. 2007. Roots of imatinib resistance: a question of self-renewal? Drug Resust. Updat. 10: 152–161.Google Scholar
  9. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Müller-Brüsselbach S, Ottmann OG, Duyster J, Hochhaus A, Neubauer A. 2005. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19: 1774–1782.PubMedGoogle Scholar
  10. Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL. 2005. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc. Natl. Acad. Sci. 102: 3395–3400.Google Scholar
  11. Canitrot Y, Falinski R, Louat T, Laurent G, Cazaux C, Hoffmann JS, Lautier D, Skorski T. 2003. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 102: 2632–2637.PubMedGoogle Scholar
  12. Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, Gregorc V, Ligorio C, Cancellieri A, Damiani S, Spreafico A, Paties CT, Lombardo L, Calandri C, Bellezza G, Tonato M, Crino L. 2004. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J. Natl. Cancer Inst.96, 1133–1141.PubMedGoogle Scholar
  13. Chu S, Holtz M, Gupta M, Bhatia R. 2004. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 103: 3167–3174.PubMedGoogle Scholar
  14. Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, Tortora G. 2001. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res. 7, 2958–2970.PubMedGoogle Scholar
  15. Deininger MW. 2008. Nilotinib. Clin. Cancer Res. 14: 4027–4031.PubMedGoogle Scholar
  16. Deininger M, Buchdunger E, Druker BJ. 2005. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653.PubMedGoogle Scholar
  17. Deininger MW, Goldman JM, Lydon N, Melo JV. 1997. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 90, 3691–3698.PubMedGoogle Scholar
  18. Di Fiore PP, Pierce JH, Fleming TP, Hazan R, Ullrich A, King CR, Schlessinger J, Aaronson SA. 1987. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51, 1063–1070.PubMedGoogle Scholar
  19. Di Gennaro E, Barbarino M, Bruzzese F, De Lorenzo S, Caraglia M, Abbruzzese A, Avallone A, Comella, .P, Caponigro F, Pepe S, Budillon A. 2003. Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 (’Iressa’), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J. Cell. Physiol. 195, 139–150.PubMedGoogle Scholar
  20. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M. 2003. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101, 690–698.PubMedGoogle Scholar
  21. Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M. 2004. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res. 64, 672–677.PubMedGoogle Scholar
  22. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566.PubMedGoogle Scholar
  23. Dutta PR, Maity A. 2007. Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer Let. 254: 165–177.Google Scholar
  24. Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borrás AM, Gale CM, Naumov GN, Yeap BY, Jarrell E, Sun J, Tracy S, Zhao X, Heymach JV, Johnson BE, Cantley LC, Jänne PA. 2006. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J. Clin. Invest. 116: 2695–2706.PubMedGoogle Scholar
  25. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Jänne PA. 2007. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043.PubMedGoogle Scholar
  26. Ferrao PT, Frost MJ, Siah SP, Ashman LK. 2003. Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro. Blood 102: 449–503.Google Scholar
  27. Fukui T, Mitsudomi T. 2008. Mutations in the epidermal growth factor receptor gene and effects of EGFR-tyrosine kinase inhibitors on lung cancers. Gen. Thorac. Cardiovasc. Surg. 56: 97–103.PubMedGoogle Scholar
  28. Godin-Heymann N, Bryant I, Rivera MN, Ulkus L, Bell DW, Riese DJ 2nd, Settleman J, Haber DA. 2007. Oncogenic activity of epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance mutation. Cancer Res. 67: 7319–7326.PubMedGoogle Scholar
  29. Godin-Heymann N, Ulkus L, Brannigan BW, McDermott U, Lamb J, Maheswaran S, Settleman J, Haber DA. 2008. The T790M "gatekeeper" mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther. 7: 874–879.PubMedGoogle Scholar
  30. Golemovic M, Verstovsek S, Giles F, Cortes J, Manshouri T, Manley PW, Mestan J, Dugan M, Alland L, Griffin JD, Arlinghaus RB, Sun T, Kantarjian H, Beran M. 2005. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin. Cancer Res. 11: 4941–4947.PubMedGoogle Scholar
  31. Gorre ME, Mohamed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. 2001. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 293, 876–880.PubMedGoogle Scholar
  32. Gridelli C, Bareschino MA, Schettino C, Rossi A, Maione P, Ciardiello F. 2007. Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist 12: 840–849.PubMedGoogle Scholar
  33. Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, Rinehart C, Seidel B, Yee D, Arteaga CL, Engelman JA. 2008. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118: 2609–2619.PubMedGoogle Scholar
  34. Han SW, Hwang PG, Chung DH, Kim DW, Im SA, Kim YT, Kim TY, Heo DS, Bang YJ, Kim NK. 2005. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int. J. Cancer 113, 109–115.PubMedGoogle Scholar
  35. Hantschel O, Rix U, Schmidt U, Bürckstümmer T, Kneidinger M, Schütze G, Colinge J, Bennett KL, Ellmeier W, Valent P, Superti-Furga G. 2007. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc. Natl. Acad. Sci. USA. 104: 13283–13288.Google Scholar
  36. Hariharan IK, Adams JM, Cory S. 1988. Bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res. 3, 387–399.PubMedGoogle Scholar
  37. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. 1985. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature. 315, 758–61.PubMedGoogle Scholar
  38. Hehlmann R. 2003. Current CML therapy: progress and dilemma. Leukemia. 17, 1010–1012.PubMedGoogle Scholar
  39. Hirata A, Ogawa S, Kometani T, Kuwano T, Naito S, Kuwano M, Ono M. 2002. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. 62, 2554–2560.PubMedGoogle Scholar
  40. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R. 2002. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16: 2190–2196.PubMedGoogle Scholar
  41. Hudziak RM, Schlessinger J, Ullrich A 1987. Increased expression of the putative grwoth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 84, 7159–7163.Google Scholar
  42. Irmer D., Funk JO, Blaukat A. 2007. EGFR kinase domain mutations- functional impact and relevance for lung cancer therapy. Oncogene 26: 5693–5701.PubMedGoogle Scholar
  43. Jänne PA, Johnson BE. 2006. Effect of epidermal growth factor receptor tyrosine kinase domain mutations on the outcome of patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin. Cancer Res. 12: 4416s-4420s.PubMedGoogle Scholar
  44. Jiang X, Saw KM, Eaves A, Eaves C. 2007a. Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J. Natl. Cancer Inst. 99: 680–693.PubMedGoogle Scholar
  45. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C. 2007b. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21: 926–935.PubMedGoogle Scholar
  46. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, Tanaka C, Manley P, Rae P, Mietlowski W, Bochinski K, Hochhaus A, Griffin JD, Hoelzer D, Albitar M, Dugan M, Cortes J, Alland L, Ottmann OG. 2006. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354: 2542–2551.PubMedGoogle Scholar
  47. Khorashad JS, Milojkovic D, Mehta P, Anand M, Ghorashian S, Reid AG, De Melo V, Babb A, de Lavallade H, Olavarria E, Marin D, Goldman JM, Apperley JF, Kaeda JS. 2008. In vivo kinetics of kinase domain mutations in CML patients treated with dasatinib after failing imatinib. Blood 111: 2378–2381.PubMedGoogle Scholar
  48. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. 2005. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 352, 786–792.PubMedGoogle Scholar
  49. Kosaka T, Yatabe Y, Endoh H, Yoshida K, Hida T, Tsuboi M, Tada H, Kuwano H, Mitsudomi T. 2006. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin. Cancer Res. 12: 5764–5769.PubMedGoogle Scholar
  50. Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, Harris PL, Driscoll DR, Fidias P, Lynch TJ, Rabindran SK, McGinnis JP, Wissner A, Sharma SV, Isselbacher KJ, Settleman J, Haber DA. 2005. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl. Acad. Sci. USA 102: 7665–7670.Google Scholar
  51. Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE, Sampson JH, Riggins GJ. 2002. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. 62: 3335–3339.PubMedGoogle Scholar
  52. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C. 2000. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 95, 1758–1766.PubMedGoogle Scholar
  53. Lee F., Fandi A. and Voi M. 2008. Overcoming kinase resistance in chronic myeloid leukemia. Int. J. Biochem. Cell Biol. 40: 334–343.PubMedGoogle Scholar
  54. Li D, Shimamura T, Ji H, Chen L, Haringsma HJ, McNamara K, Liang MC, Perera SA, Zaghlul S, Borgman CL, Kubo S, Takahashi M, Sun Y, Chirieac LR, Padera RF, Lindeman NI, Jänne PA, Thomas RK, Meyerson ML, Eck MJ, Engelman JA, Shapiro GI, Wong KK. 2007. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 12: 81–93.PubMedGoogle Scholar
  55. Lionberger JM, Wilson MB, Smithgall TE. 2000. Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck. J. Biol. Chem. 275: 18581–18585.PubMedGoogle Scholar
  56. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM. 2004. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47: 6658–6661.PubMedGoogle Scholar
  57. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 3129–3139.Google Scholar
  58. Magne N, Fischel JL, Dubreuil A, Formento P, Poupon MF, Laurent-Puig P, Milano G. 2002. Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD1839 ("Iressa"). Br. J. Cancer 86, 1518–1523.PubMedGoogle Scholar
  59. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV. 2000. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 96, 1070–1079.PubMedGoogle Scholar
  60. Manley PW, Cowan-Jacob-SW, Fendrich G, Metan J. 2005. Molecular interactions between the highly selective pan-Bcr-Abl inhibitor, AMN107 and the kinase domain of Abl. Blood 106: 940a.Google Scholar
  61. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG. 1994. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood. 83, 1179–1187.PubMedGoogle Scholar
  62. Miething C, Grundler R, Mugler C, Brero S, Hoepfl J, Geigl J, Speicher MR, Ottmann O, Peschel C, Duyster J. 2007. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proc. Natl. Acad. Sci. USA. 104: 4594–4599.Google Scholar
  63. Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY. 2006. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res. 66: 10100–10111.PubMedGoogle Scholar
  64. Mueller KL, Hunter LA, Ethier SP, Boerner JL. 2008. Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells. Cancer Res. 68: 3314–3322.PubMedGoogle Scholar
  65. Nam S, Kim D, Cheng JQ, Zhang S, Lee JH, Buettner R, Mirosevich J, Lee FY, Jove R. 2005. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res. 65: 9185–9189.PubMedGoogle Scholar
  66. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T. 1999. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J. Exp. Med. 189, 1229–1242.PubMedGoogle Scholar
  67. Nowell PC, Hungerford DA. 1960. A minute chromosome in human granulocytic leukemia. Science. 132, 1497.Google Scholar
  68. O’Hare T, Eide CA, Tyner JW, Corbin AS, Wong MJ, Buchanan S, Holme K, Jessen KA, Tang C, Lewis HA, Romero RD, Burley SK, Deininger MW. 2008. SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc. Natl. Acad. Sci. USA. 105: 5507–5512.Google Scholar
  69. O’Hare T, Walters DK, Deininger MW, Druker BJ. 2005b. AMN107: tightening the grip of imatinib. Cancer Cell. 7, 117–119.PubMedGoogle Scholar
  70. O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MW, Druker BJ. 2005a. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 66: 4500–4505.Google Scholar
  71. Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H, Fujii T, Kuwano M. 2004. Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol. Cancer Ther. 3, 465–472.PubMedGoogle Scholar
  72. Ono M, Kuwano M. 2006. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeted drugs. Clin. Cancer Res. 12: 7242–7251.PubMedGoogle Scholar
  73. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500.PubMedGoogle Scholar
  74. Pao W, Miller VA, Kris MG. 2004a. ‘Targeting’ the epidermal growth factor receptor tyrosine kinase with gefitinib (Iressa®) in non-small cell lung cancer (NSCLC). Sem. Cancer Biol. 14, 33–40.Google Scholar
  75. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. 2005a. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PloS Med. 3: 225–235.Google Scholar
  76. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. 2005b. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2: 57–61.Google Scholar
  77. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H. 2004b. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 101, 13306–13311.Google Scholar
  78. Pollack VA, Savage DM, Baker DA, Tsaparikos KE, Sloan DE, Moyer JD, Barbacci EG, Pustilnik LR, Smolarek TA, Davis JA, Vaidya MP, Arnold LD, Doty JL, Iwata KK, Morin MJ. 1999. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther. 291: 739–748.PubMedGoogle Scholar
  79. Quintás-Cardama A, Kantarjian H, Cortes J. 2007. Flying under the radar: the new wave of BCR-ABL inhibitors. Nat. Rev. Drug Discov. 6: 834–848.PubMedGoogle Scholar
  80. Quintás-Cardama A, Cortes J. 2008. Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin. Cancer Res. 14: 4392–4399.PubMedGoogle Scholar
  81. Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E, Reich MF, Shen R, Shi X, Tsou HR, Wang YF, Wissner A. 2004. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 64: 3958–3965.PubMedGoogle Scholar
  82. Ramirez P. and DiPersio JF. 2008. Therapy options in imatinib failures. The Oncologist 13: 424–434.PubMedGoogle Scholar
  83. Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, Zakowski MF, Kris MG, Ladanyi M, Miller VA. 2006. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin. Cancer Res. 12: 839–844.PubMedGoogle Scholar
  84. Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, Köcher T, Superti-Furga G. 2007. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110: 4055–4063.PubMedGoogle Scholar
  85. Rovera G, Valtieri M, Mavilio F, Reddy EP. 1987. Effect of Abelson murine leukemia virus on granulocytic differentiation and interleukin-3 dependence of a murine progenitor cell line. Oncogene 1, 29–35.PubMedGoogle Scholar
  86. Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB. 2006. Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res. 13: 6468–6472.Google Scholar
  87. Sawyers CL. 2004. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev. 17, 2998–3010.Google Scholar
  88. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. 2000. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 289, 1938–1942.PubMedGoogle Scholar
  89. Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY, Bokemeyer C, Deininger MW, Druker BJ, Heinrich MC. 2006. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 66: 473–481.PubMedGoogle Scholar
  90. Shah NP, Sawyers CL. 2003. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene. 22, 7389–7395.PubMedGoogle Scholar
  91. Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL, Sawyers CL. 2007. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J. Clin. Invest. 117: 2562–2569.PubMedGoogle Scholar
  92. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. 2004. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 305, 399–401.PubMedGoogle Scholar
  93. Sliwinski T, Czechowska A, Szemraj J, Morawiec Z, Skorski T, Blasiak J. 2008. STI571 reduces NER activity in BCR/ABL-expressing cells. Mutat. Res. 654: 162–167.PubMedGoogle Scholar
  94. Sirotnak FM. 2003. Studies with ZD1839 in preclinical models. Semin. Oncol. 30, 12–20.PubMedGoogle Scholar
  95. Soverini S, Colarossi S, Gnani A, Castagnetti F, Rosti G, Bosi C, Paolini S, Rondoni M, Piccaluga PP, Palandri F, Giannoulia P, Marzocchi G, Luatti S, Testoni N, Iacobucci I, Cilloni D, Saglio G, Baccarani M, Martinelli G. 2007. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Hematologica 92: 404–404.Google Scholar
  96. Soverini S, Martinelli G, Colarossi S, Gnani A, Castagnetti F, Rosti G, Bosi C, Paolini S, Rondoni M, Piccaluga PP, Palandri F, Giannoulia P, Marzocchi G, Luatti S, Testoni N, Iacobucci I, Cilloni D, Saglio G, Baccarani M. 2006. Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to dasatinib in Philadelphia chromosome-positive leukemia. J. Clin. Onol. 24: e51–52.Google Scholar
  97. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. 2004. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 18, 189–218.PubMedGoogle Scholar
  98. Stoklosa T, Poplawski T, Koptyra M, Nieborowska-Skorska M, Basak G, Slupianek A, Rayevskaya M, Seferynska I, Herrera L, Blasiak J, Skorski T. 2008. BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res. 68: 2576–2580.PubMedGoogle Scholar
  99. Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J, Cullen D, Coburn A, Moore SA, Okabe R, Fabbro D, Manley PW, Griffin JD, Gilliland DG. 2005. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 106: 3206–13.PubMedGoogle Scholar
  100. Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FY, Borzillerri R, Lombardo LJ, Xie D, Zhang Y, Klei HE. 2006. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 66: 5790–5797.PubMedGoogle Scholar
  101. Velu TJ, Beguinot L, Vass WC, Willingham MC, Merlino GT, Pastan I, Lowy DR. 1987. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238, 1408–1410.PubMedGoogle Scholar
  102. Vennstrom B, Bishop JM. 1982. Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell 28, 135–143.PubMedGoogle Scholar
  103. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH. 2002. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62, 5749–5754.PubMedGoogle Scholar
  104. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW, Hochhaus A, Neubauer A, Burchert A. 2007. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 109: 2147–2155.PubMedGoogle Scholar
  105. Ward WH, Cook PN, Slater AM, Davies DH, Holdgate GA, Green LR. 1994. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem. Pharmacol. 48, 659–666.Google Scholar
  106. Warmuth M, Bergmann M, Priess A, Häuslmann K, Emmerich B, Hallek M. 1997. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J. Biol. Chem. 272: 33260–33270.PubMedGoogle Scholar
  107. Weisberg E, Griffin JD. 2000. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood. 95, 3498–3505.PubMedGoogle Scholar
  108. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Azam M, Neuberg D, Wright RD, Gilliland DG, Griffin JD. 2005. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7: 129–141.PubMedGoogle Scholar
  109. Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR, Bornmann WG, Clarkson B, McCombie WR, Kogan SC, Hochhaus A, Lowe SW. 2006. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc. Natl. Acad. Sci. USA. 103: 7444–7449.Google Scholar
  110. Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG, Darnay BG, Lamothe B, Sun H, Talpaz M, Donato NJ. 2008. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J. Natl. Cancer Inst. 100: 926–939.PubMedGoogle Scholar
  111. Yamamoto T, Hihara H, Nishida T, Kawai S, Toyoshima K. 1983. A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell 34, 225–232.PubMedGoogle Scholar
  112. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. 2008. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA. 105: 2070–2075.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fels Institute for Cancer Research and Molecular BiologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations