Molecular Signatures of Drug Resistance

  • Melissa A. TroesterEmail author
  • Jason I. Herschkowitz
  • Katherine A. Hoadley


Genomic methods are helping to overcome limitations of individual markers in predicting response to chemotherapy. Molecular signatures of cancer heterogeneity and drug resistance are being developed that use data from both observational and experimental settings. Genomic signatures that represent specific pathways and biological processes are being integrated from diverse data types, including cell line models, genetically engineered mouse models, and patient studies of drug resistance. This chapter highlights recent advances and future directions in genomics of drug resistance, with emphasis on integrating insights from different study settings.


Microarrays Animal models Molecular signatures Stem cells Microenvironment Cancer heterogeneity 


  1. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke, M. F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983–8.PubMedGoogle Scholar
  2. Arnold, J. T., Kaufman, D. G., Seppala, M. and Lessey, B. A. 2001. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod 16, 836–45.PubMedGoogle Scholar
  3. Arnold, J. T., Lessey, B. A., Seppala, M. and Kaufman, D. G. 2002. Effect of normal endometrial stroma on growth and differentiation in Ishikawa endometrial adenocarcinoma cells. Cancer Res 62, 79–88.PubMedGoogle Scholar
  4. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D. and Rich, J. N. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–60.PubMedGoogle Scholar
  5. Bardou, V. J., Arpino, G., Elledge, R. M., Osborne, C. K. and Clark, G. M. 2003. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21, 1973–9.PubMedGoogle Scholar
  6. Baselga, J., Carbonell, X., Castaneda-Soto, N. J., Clemens, M., Green, M., Harvey, V., Morales, S., Barton, C. and Ghahramani, P. 2005. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23, 2162–71.PubMedGoogle Scholar
  7. Bertheau, P., Turpin, E., Rickman, D. S., Espie, M., de Reynies, A., Feugeas, J. P., Plassa, L. F., Soliman, H., Varna, M., de Roquancourt, A. et al. 2007. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med 4, e90.PubMedGoogle Scholar
  8. Bianco, R., Shin, I., Ritter, C. A., Yakes, F. M., Basso, A., Rosen, N., Tsurutani, J., Dennis, P. A., Mills, G. B. and Arteaga, C. L. 2003. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22, 2812–22.PubMedGoogle Scholar
  9. Bild, A. H., Yao, G., Chang, J. T., Wang, Q., Potti, A., Chasse, D., Joshi, M. B., Harpole, D., Lancaster, J. M., and Berchuck, A. et al. 2006. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353--7.Google Scholar
  10. Birkenkamp-Demtroder, K., Christensen, L. L., Olesen, S. H., Frederiksen, C. M., Laiho, P., Aaltonen, L. A., Laurberg, S., Sorensen, F. B., Hagemann, R. and TF, O. R. 2002. Gene expression in colorectal cancer. Cancer Res 62, 4352–63.PubMedGoogle Scholar
  11. Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., Barbosa-Morais, N. L., Teschendorff, A. E., Green, A. R., Ellis, I. O. et al. 2007. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8, R214.PubMedGoogle Scholar
  12. Bonnet, D. and Dick, J. E. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730–7.PubMedGoogle Scholar
  13. Boxer, R. B., Jang, J. W., Sintasath, L. and Chodosh, L. A. 2004. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577--86.Google Scholar
  14. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A., Causton, H. C. et al. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29, 365–71.PubMedGoogle Scholar
  15. Buess, M., Nuyten, D. S., Hastie, T., Nielsen, T., Pesich, R. and Brown, P. O. 2007. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol 8, R191.PubMedGoogle Scholar
  16. Carey, L. A., Dees, E. C., Sawyer, L., Gatti, L., Moore, D. T., Collichio, F., Ollila, D. W., Sartor, C. I., Graham, M. L. and Perou, C. M. 2007. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13, 2329–34.PubMedGoogle Scholar
  17. Carey, L. A., Perou, C. M., Livasy, C. A., Dressler, L. G., Cowan, D., Conway, K., Karaca, G., Troester, M. A., Tse, C. K., Edmiston, S. et al. 2006. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 295, 2492–502.PubMedGoogle Scholar
  18. Chang, H. Y., Sneddon, J. B., Alizadeh, A. A., Sood, R., West, R. B., Montgomery, K., Chi, J. T., van de Rijn, M., Botstein, D. and Brown, P. O. 2004. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2, E7.PubMedGoogle Scholar
  19. Chang, J. C., Creighton, C., Landis, M., Lewis, M. T., Li, X., Pavlick, A., Perou, C. M. and Rosen, J. 2008. A tumorigenesis signature in breast is enriched after treatment. J Clin Oncol, 26, 11009.Google Scholar
  20. Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., Lapuk, A., Neve, R. M., Qian, Z., Ryder, T. et al. 2006. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–41.PubMedGoogle Scholar
  21. Chung, C. H., Parker, J., Karaca, G., Wu, J., Funkhouser, W. K., Moore, D., Xiang, D., Shockley, W. W., Weissler, M. C., Dressler, L. et al. 2004. Molecular Classification of Head and Neck Squamous Cell Carcinomas using Patterns of Gene Expression. Cancer Cell 5, 489--500.Google Scholar
  22. Ciardiello, F., Troiani, T., Caputo, F., De Laurentiis, M., Tortora, G., Palmieri, G., De Vita, F., Diadema, M. R., Orditura, M., Colantuoni, G. et al. 2006. Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br J Cancer 94, 1604–9.PubMedGoogle Scholar
  23. Colleoni, M., Viale, G., Zahrieh, D., Pruneri, G., Gentilini, O., Veronesi, P., Gelber, R. D., Curigliano, G., Torrisi, R., Luini, A. et al. 2004. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res 10, 6622–8.PubMedGoogle Scholar
  24. Colozza, M., Azambuja, E., Cardoso, F., Sotiriou, C., Larsimont, D. and Piccart, M. J. 2005. Proliferative markers as prognostic and predictive tools in early breast cancer: where are we now? Ann Oncol 16, 1723–39.PubMedGoogle Scholar
  25. Croner, R. S., Foertsch, T., Brueckl, W. M., Guenther, K., Siebenhaar, R., Stremmel, C., Matzel, K. E., Papadopoulos, T., Kirchner, T., Behrens, J. et al. 2005. Common denominator genes that distinguish colorectal carcinoma from normal mucosa. Int J Colorectal Dis 20, 353–62.PubMedGoogle Scholar
  26. D’Cruz, C. M., Gunther, E. J., Boxer, R. B., Hartman, J. L., Sintasath, L., Moody, S. E., Cox, J. D., Ha, S. I., Belka, G. K., Golant, A. et al. 2001. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7, 235–9.PubMedGoogle Scholar
  27. Dai, H., van’t Veer, L., Lamb, J., He, Y. D., Mao, M., Fine, B. M., Bernards, R., van de Vijver, M., Deutsch, P., Sachs, A. et al. 2005. A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res 65, 4059–66.PubMedGoogle Scholar
  28. Dontu, G. and Wicha, M. S. 2005. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10, 75–86.PubMedGoogle Scholar
  29. Efron, B. and Tibshirani, R. 2007. Annals of Applied Statistics. 1, 107--29.Google Scholar
  30. Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863–8.PubMedGoogle Scholar
  31. Frese, K. K. and Tuveson, D. A. 2007. Maximizing mouse cancer models. Nat Rev Cancer 7, 645–58.PubMedGoogle Scholar
  32. Ghadimi, B. M., Grade, M., Difilippantonio, M. J., Varma, S., Simon, R., Montagna, C., Fuzesi, L., Langer, C., Becker, H., Liersch, T. et al. 2005. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 23, 1826–38.PubMedGoogle Scholar
  33. Gianni, L., Zambetti, M., Clark, K., Baker, J., Cronin, M., Wu, J., Mariani, G., Rodriguez, J., Carcangiu, M., Watson, D. et al. 2005. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23, 7265–77.PubMedGoogle Scholar
  34. Granda, W. V. 2003. Strategies for Clustering, Classifying, Integrating, Standardizing and Visualizing Microarray Gene Expression Data. In A Beginner’s Guide to Microarrays, ed. E. M. Blalock. Norwell, MA: Kluwer.Google Scholar
  35. Greenblatt, M. S., Bennett, W. P., Hollstein, M. and Harris, C. C. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855–78.PubMedGoogle Scholar
  36. Group, E. B. C. T. C. 2005. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–717.Google Scholar
  37. Hainaut, P., Soussi, T., Shomer, B., Hollstein, M., Greenblatt, M., Hovig, E., Harris, C. C. and Montesano, R. 1997. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res 25, 151–7.PubMedGoogle Scholar
  38. Harris, L., Fritsche, H., Mennel, R., Norton, L., Ravdin, P., Taube, S., Somerfield, M. R., Hayes, D. F. and Bast, R. C., Jr. 2007. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25, 5287–312.PubMedGoogle Scholar
  39. Hayes, D. N., Monti, S., Parmigiani, G., Gilks, C. B., Naoki, K., Bhattacharjee, A., Socinski, M. A., Perou, C. and Meyerson, M. 2006. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol 24, 5079–90.PubMedGoogle Scholar
  40. Herschkowitz, J. I., Simin, K., Weigman, V. J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K. E., Jones, L. P., Assefnia, S., Chandrasekharan, S. et al. 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8, R76.PubMedGoogle Scholar
  41. Hess, K. R., Anderson, K., Symmans, W. F., Valero, V., Ibrahim, N., Mejia, J. A., Booser, D., Theriault, R. L., Buzdar, A. U., Dempsey, P. J. et al. 2006. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24, 4236–44.PubMedGoogle Scholar
  42. Hoadley, K. A., Weigman, V. J., Fan, C., Sawyer, L. R., He, X., Troester, M. A., Sartor, C. I., Rieger-House, T., Bernard, P. S., Carey, L. A. et al. 2007. EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 8, 258.PubMedGoogle Scholar
  43. Hu, Z., Fan, C., Oh, D. S., Marron, J. S., He, X., Qaqish, B. F., Livasy, C., Carey, L. A., Reynolds, E., Dressler, L. et al. 2006. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96.PubMedGoogle Scholar
  44. Jansen, M. P., Foekens, J. A., van Staveren, I. L., Dirkzwager-Kiel, M. M., Ritstier, K., Look, M. P., Meijer-van Gelder, M. E., Sieuwerts, A. M., Portengen, H., Dorssers, L. C. et al. 2005. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol 23, 732–40.PubMedGoogle Scholar
  45. Jonkers, J. and Berns, A. 2002. Conditional mouse models of sporadic cancer. Nat Rev Cancer 2, 251–65.PubMedGoogle Scholar
  46. Kilburn, L. S. 2008. ‘Triple negative’ breast cancer: a new area for phase III breast cancer clinical trials. Clin Oncol (R Coll Radiol) 20, 35–9.Google Scholar
  47. Lamb, J., Ramaswamy, S., Ford, H. L., Contreras, B., Martinez, R. V., Kittrell, F. S., Zahnow, C. A., Patterson, N., Golub, T. R. and Ewen, M. E. 2003. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–34.PubMedGoogle Scholar
  48. Langerod, A., Zhao, H., Borgan, O., Nesland, J. M., Bukholm, I. R., Ikdahl, T., Karesen, R., Borresen-Dale, A. L. and Jeffrey, S. S. 2007. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9, R30.PubMedGoogle Scholar
  49. Lev, D. C., Kim, L. S., Melnikova, V., Ruiz, M., Ananthaswamy, H. N. and Price, J. E. 2004. Dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition of breast cancer cells. Br J Cancer 91, 795–802.PubMedGoogle Scholar
  50. Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88, 323–31.PubMedGoogle Scholar
  51. Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick, A., Zhang, X., Chamness, G. C. et al. 2008. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100, 672–9.PubMedGoogle Scholar
  52. Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I. R., Lu, L., Irvin, D., Black, K. L. and Yu, J. S. 2006. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5, 67.PubMedGoogle Scholar
  53. Liu, R., Wang, X., Chen, G. Y., Dalerba, P., Gurney, A., Hoey, T., Sherlock, G., Lewicki, J., Shedden, K. and Clarke, M. F. 2007. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356, 217–26.PubMedGoogle Scholar
  54. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E. and Jacks, T. 1994. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–10.PubMedGoogle Scholar
  55. Lowe, S. W., Ruley, H. E., Jacks, T. and Housman, D. E. 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–67.PubMedGoogle Scholar
  56. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G. et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 2129–39.PubMedGoogle Scholar
  57. Ma, X. J., Wang, Z., Ryan, P. D., Isakoff, S. J., Barmettler, A., Fuller, A., Muir, B., Mohapatra, G., Salunga, R., Tuggle, J. T. et al. 2004. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5, 607–16.PubMedGoogle Scholar
  58. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M. et al. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–15.PubMedGoogle Scholar
  59. Menard, S., Valagussa, P., Pilotti, S., Gianni, L., Biganzoli, E., Boracchi, P., Tomasic, G., Casalini, P., Marubini, E., Colnaghi, M. I. et al. 2001. Response to cyclophosphamide, methotrexate, and fluorouracil in lymph node-positive breast cancer according to HER2 overexpression and other tumor biologic variables. J Clin Oncol 19, 329–35.PubMedGoogle Scholar
  60. Miller, L. D., Smeds, J., George, J., Vega, V. B., Vergara, L., Ploner, A., Pawitan, Y., Hall, P., Klaar, S., Liu, E. T. et al. 2005. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102, 13550–5.PubMedGoogle Scholar
  61. Moliterni, A., Menard, S., Valagussa, P., Biganzoli, E., Boracchi, P., Balsari, A., Casalini, P., Tomasic, G., Marubini, E., Pilotti, S. et al. 2003. HER2 overexpression and doxorubicin in adjuvant chemotherapy for resectable breast cancer. J Clin Oncol 21, 458–62.PubMedGoogle Scholar
  62. Moody, S. E., Sarkisian, C. J., Hahn, K. T., Gunther, E. J., Pickup, S., Dugan, K. D., Innocent, N., Cardiff, R. D., Schnall, M. D. and Chodosh, L. A. 2002. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–61.PubMedGoogle Scholar
  63. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E. et al. 2003. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267–73.PubMedGoogle Scholar
  64. Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., Clark, L., Bayani, N., Coppe, J. P., Tong, F. et al. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–27.PubMedGoogle Scholar
  65. Nielsen, T. O., Hsu, F. D., Jensen, K., Cheang, M., Karaca, G., Hu, Z., Hernandez-Boussard, T., Livasy, C., Cowan, D., Dressler, L. et al. 2004. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10, 5367–74.PubMedGoogle Scholar
  66. Normanno, N., Campiglio, M., Maiello, M. R., De Luca, A., Mancino, M., Gallo, M., D‘Alessio, A. and Menard, S. 2008. Breast cancer cells with acquired resistance to the EGFR tyrosine kinase inhibitor gefitinib show persistent activation of MAPK signaling. 112, 25–33.Google Scholar
  67. Normanno, N., De Luca, A., Maiello, M. R., Campiglio, M., Napolitano, M., Mancino, M., Carotenuto, A., Viglietto, G. and Menard, S. 2006. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 207, 420–7.PubMedGoogle Scholar
  68. Oh, D. S., Troester, M. A., Usary, J., Hu, Z., He, X., Fan, C., Wu, J., Carey, L. A. and Perou, C. M. 2006. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24, 1656–64.PubMedGoogle Scholar
  69. Osborne, C. K., Yochmowitz, M. G., Knight, W. A. d. and McGuire, W. L. 1980. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46, 2884–8.PubMedGoogle Scholar
  70. Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J. et al. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–500.PubMedGoogle Scholar
  71. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L. et al. 2004. EGF receptor gene mutations are common in lung cancers from “never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101, 13306–11.PubMedGoogle Scholar
  72. Pardal, R. Clarke, M. F. and Morrison, S. J. 2003. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3, 895–902.PubMedGoogle Scholar
  73. Pellegrino, M., Provero, P., Silengo, L. and Di Cunto, F. 2004. CLOE: identification of putative functional relationships among genes by comparison of expression profiles between two species. BMC Bioinformatics 5, 179.PubMedGoogle Scholar
  74. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A. et al. 2000. Molecular portraits of human breast tumours. Nature 406, 747–52.PubMedGoogle Scholar
  75. Pharoah, P. D. Day, N. E. and Caldas, C. 1999. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80, 1968–73.PubMedGoogle Scholar
  76. Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., Tibshirani, R., Botstein, D., Borresen-Dale, A. L. and Brown, P. O. 2002. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99, 12963–8.PubMedGoogle Scholar
  77. Polychronis, A., Sinnett, H. D., Hadjiminas, D., Singhal, H., Mansi, J. L., Shivapatham, D., Shousha, S., Jiang, J., Peston, D., Barrett, N. et al. 2005. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled phase II randomised trial. Lancet Oncol 6, 383–91.PubMedGoogle Scholar
  78. Potter, J. D. 2003. Epidemiology, cancer genetics and microarrays: making correct inferences, using appropriate designs. Trends Genet 19, 690–5.PubMedGoogle Scholar
  79. Rangarajan, A., Hong, S. J., Gifford, A. and Weinberg, R. A. 2004. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171–83.PubMedGoogle Scholar
  80. Rangarajan, A. and Weinberg, R. A. 2003. Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3, 952–9.PubMedGoogle Scholar
  81. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A. and Chinnaiyan, A. M. 2004. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101, 9309–14.PubMedGoogle Scholar
  82. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–5.PubMedGoogle Scholar
  83. Rottenberg, S., Nygren, A. O., Pajic, M., van Leeuwen, F. W., van der Heijden, I., van de Wetering, K., Liu, X., de Visser, K. E., Gilhuijs, K. G., van Tellingen, O. et al. 2007. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci U S A 104, 12117–22.PubMedGoogle Scholar
  84. Rouzier, R., Perou, C. M., Symmans, W. F., Ibrahim, N., Cristofanilli, M., Anderson, K., Hess, K. R., Stec, J., Ayers, M., Wagner, P. et al. 2005. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11, 5678–85.PubMedGoogle Scholar
  85. Sadlonova, A., Novak, Z., Johnson, M. R., Bowe, D. B., Gault, S. R., Page, G. P., Thottassery, J. V., Welch, D. R. and Frost, A. R. 2005. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res 7, R46–59.PubMedGoogle Scholar
  86. Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., Kohn, K. W., Reinhold, W. C., Myers, T. G., Andrews, D. T. et al. 2000. A gene expression database for the molecular pharmacology of cancer [see comments]. Nat Genet 24, 236–44.PubMedGoogle Scholar
  87. Segal, E., Friedman, N., Kaminski, N., Regev, A. and Koller, D. 2005. From signatures to models: understanding cancer using microarrays. Nat Genet 37 Suppl, S38–45.PubMedGoogle Scholar
  88. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D. and Friedman, N. 2003. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34, 166–76.PubMedGoogle Scholar
  89. Shafee, N., Smith, C. R., Wei, S., Kim, Y., Mills, G. B., Hortobagyi, G. N., Stanbridge, E. J. and Lee, E. Y. 2008. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68, 3243–50.PubMedGoogle Scholar
  90. Sharpless, N. E. and Depinho, R. A. 2006. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5, 741–54.PubMedGoogle Scholar
  91. Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A. A., D’Amico, A. V., Richie, J. P. et al. 2002. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–9.PubMedGoogle Scholar
  92. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. and Dirks, P. B. 2004. Identification of human brain tumour initiating cells. Nature 432, 396–401.PubMedGoogle Scholar
  93. Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S. et al. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98, 10869–74.PubMedGoogle Scholar
  94. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S. et al. 2003. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100, 8418–23.PubMedGoogle Scholar
  95. Staunton, J. E., Slonim, D. K., Coller, H. A., Tamayo, P., Angelo, M. J., Park, J., Scherf, U., Lee, J. K., Reinhold, W. O., Weinstein, J. N. et al. 2001. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 98, 10787–92.PubMedGoogle Scholar
  96. Stuart, J. M., Segal, E., Koller, D. and Kim, S. K. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–55.PubMedGoogle Scholar
  97. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545–50.PubMedGoogle Scholar
  98. Szakacs, G., Annereau, J. P., Lababidi, S., Shankavaram, U., Arciello, A., Bussey, K. J., Reinhold, W., Guo, Y., Kruh, G. D., Reimers, M. et al. 2004. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6, 129–37.PubMedGoogle Scholar
  99. Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. 2002. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99, 6567–72.PubMedGoogle Scholar
  100. Troester, M. A., Herschkowitz, J. I., Oh, D. S., He, X., Hoadley, K. A., Barbier, C. S. and Perou, C. M. 2006. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6, 276.PubMedGoogle Scholar
  101. Troester, M. A., Hoadley, K. A., Parker, J. S. and Perou, C. M. 2004a. Prediction of toxicant-specific gene expression signatures after chemotherapeutic treatment of breast cell lines. Environ Health Perspect 112, 1607–13.PubMedGoogle Scholar
  102. Troester, M. A., Hoadley, K. A., Sorlie, T., Herbert, B. S., Borresen-Dale, A. L., Lonning, P. E., Shay, J. W., Kaufmann, W. K. and Perou, C. M. 2004b. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 64, 4218–26.PubMedGoogle Scholar
  103. Tusher, V. G. Tibshirani, R. and Chu, G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–21.PubMedGoogle Scholar
  104. van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T. et al. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–6.PubMedGoogle Scholar
  105. Van Dyke, T. and Jacks, T. 2002. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–44.PubMedGoogle Scholar
  106. Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher, L., Slamon, D. J., Murphy, M., Novotny, W. F., Burchmore, M. et al. 2002. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20, 719–26.PubMedGoogle Scholar
  107. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M. et al. 2006. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103, 2257–61.PubMedGoogle Scholar
  108. Weinstein, I. B. 2002. Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 297, 63–4.PubMedGoogle Scholar
  109. Weinstein, I. B. and Joe, A. K. 2006. Mechanisms of disease: Oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3, 448–57.PubMedGoogle Scholar
  110. Zhang, C. C., Yang, J. M., White, E., Murphy, M., Levine, A. and Hait, W. N. 1998. The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 16, 1617–24.PubMedGoogle Scholar
  111. Zhang, F., Yang, Y., Smith, T., Kau, S. W., McConathy, J. M., Esteva, F. J., Kuerer, H. M., Symmans, W. F., Buzdar, A. U., Hortobagyi, G. N. et al. 2003. Correlation between HER-2 expression and response to neoadjuvant chemotherapy with 5-fluorouracil, doxorubicin, and cyclophosphamide in patients with breast carcinoma. Cancer 97, 1758–65.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Melissa A. Troester
    • 1
    Email author
  • Jason I. Herschkowitz
    • 2
  • Katherine A. Hoadley
    • 3
  1. 1.Department of EpidemiologySchool of Public Health, University of North CarolinaChapel HillUSA
  2. 2.Department of Cell Biology –RosenBaylor College of MedicineHoustonUSA
  3. 3.Department of Genetics, Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations