Skip to main content

Resistance to Differentiation Therapy

  • Chapter
  • First Online:
Drug Resistance in Cancer Cells

Abstract

Incorporation of all-trans-retinoic acid (ATRA) into the treatment of acute promyelocytic leukemia (APL), a type of acute myeloid leukemia (AML), revolutionized the therapy of cancer and introduced the concept of differentiation therapy in the last decade. ATRA, a physiological metabolite of vitamin A (retinol), induces complete clinical remissions (CR) initially in about 90% of patients with APL. In contrast to the cytotoxic chemotherapeutics, ATRA can selectively induce terminal differentiation of promyelocytic leukemia cells into normal granulocytes without causing bone marrow hypoplasia or exacerbation of the frequently occurring fatal hemorrhagic syndromes in patients with APL. Unfortunately, ATRA-induced remissions are transient and most APL patients become quickly resistant to the therapy and relapse, thus limiting the use of ATRA as a single agent. Based on in vitro, in vivo, and clinical observations, several mechanisms including induction of accelerated metabolism of ATRA, decreased bioavailability and plasma drug levels, point mutations in the ligand-binding domain of PML–RARα fusion protein and other molecular events have been proposed to explain resistance to differentiation therapy by ATRA. Although different compounds, such as phorbol ester (TPA), vitamin D3, interferons, and dimethyl sulfoxide can induce differentiation in vitro, ATRA represents the first successful use of differentiation therapy in the clinic; therefore, here we will focus on mechanisms that regulate ATRA-induced myeloid cell differentiation and the molecular mechanisms causing resistance to ATRA and possible clinical approaches to overcome resistance to differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson PC. 1996. All-Trans-Retinoic acid pharmacology and its impact on the treatment of acute promyelocytic leukemia. Oncologist, 1:305–14.

    PubMed  CAS  Google Scholar 

  • Agadir A, Cornic M, Jerome M et al. Chomienne C. 1995a. Characterization of nuclear retinoic acid binding activity in sensitive leukemic cell lines. Cell specific uptake of ATRA and RAR alpha protein modulation. Biochem Biophys Res Commun, 213:112–22.

    Article  PubMed  CAS  Google Scholar 

  • Agadir A, Cornic M, Lefebvre P, Gourmel B, Balitrand N, Degos L, Chomienne C. 1995b. Differential uptake of all-trans retinoic acid by acute promyelocytic leukemic cells. evidence for its role in retinoic acid efficacy. Leukemia, 9:139–45.

    PubMed  CAS  Google Scholar 

  • Benedetti L, Grignani F, Scicchitano BM et al. 1996. Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARalpha-mediated increase of type II transglutaminase. Blood, 87:1939–50.

    PubMed  CAS  Google Scholar 

  • Boylan JF, Gudas LJ. 1991. Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells. J Cell Biol, 112:965–79.

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Kogan S, Lagasse E et al. 1997. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 94:2551–56.

    Google Scholar 

  • Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L. 1990. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood, 76:1704–09.

    CAS  Google Scholar 

  • Chambon P. 1996. A decade of molecular biology of retinoic acid receptors. FASEB J, 10:940–54.

    PubMed  CAS  Google Scholar 

  • Collins SJ, Robertson KA, Mueller L. 1990. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol, 10:2154–63.

    PubMed  CAS  Google Scholar 

  • Delva L, Cornic M, Balitrand N et al. 1993. Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia. study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood, 82:2175–81.

    PubMed  CAS  Google Scholar 

  • Ding W, Li YP, Nobile LM et al. 1998. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARalpha fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood, 92:1172–83.

    PubMed  CAS  Google Scholar 

  • Douer D, Estey E, Santillana S, Bennett JM, Lopez-Bernstein G, Boehm K, Williams T. 2001. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood, 97:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Dyck JA, Warrell RP, Jr., Evans RM, Miller WH, Jr. 1995. Rapid diagnosis of acute promyelocytic leukemia by immunohistochemical localization of PML/RAR-alpha protein. Blood, 86:862–67.

    PubMed  CAS  Google Scholar 

  • Estey EH, Giles FJ, Kantarjian H, O’Brien S, Freireich EJ, Lopez-Berestein G, Keating M. 1999. Molecular remissions induced by liposomal-encapsulated all-trans retinoic acid in newly diagnosed acute promyelocytic leukemia. Blood, 94:2230–35.

    PubMed  CAS  Google Scholar 

  • Estey E, Thall PF, Mehta K et al. 1996. Alterations in tretinoin pharmacokinetics following administration of liposomal all-trans retinoic acid. Blood, 87:3650–54.

    PubMed  CAS  Google Scholar 

  • Fanelli M, Minucci S, Gelmetti V, Nervi C, Gambacorti-Passerini C, Pelicci PG. 1999. Constitutive degradation of PML/RARalpha through the proteasome pathway mediates retinoic acid resistance. Blood, 93:1477–81.

    PubMed  CAS  Google Scholar 

  • Fenaux P, Chomienne C, Degos L. 2001. All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Semin Hematol, 38:13–25.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RE, Willman CL, Slack JL et al. 1997. Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: An intergroup molecular study. Blood, 90:1656–63.

    PubMed  CAS  Google Scholar 

  • Gallagher RE, Li YP, Rao S et al. 1995. Characterization of acute promyelocytic leukemia cases with PML-RAR alpha break/fusion sites in PML exon 6. Identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood, 86:1540–47.

    PubMed  CAS  Google Scholar 

  • Gerlach JH, Kartner N, Bell DR, Ling V. 1986. Multidrug resistance. Cancer Surv, 5:25–46.

    Google Scholar 

  • Grignani F, Ferrucci PF, Testa U et al. 1993. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell, 74:423–31.

    Article  PubMed  CAS  Google Scholar 

  • Grignani F, De Matteis S, Nervi C et al. 1998. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature, 391:815–18.

    Article  PubMed  CAS  Google Scholar 

  • He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP. 1998. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co- repressors determine differential responses to RA in APL. Nat Genet, 18:126–35.

    Article  PubMed  CAS  Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen TM et al. 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature, 387:43–48.

    Article  PubMed  CAS  Google Scholar 

  • Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS. 1998. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet, 63:297–304.

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi M, Suzuki H, Yoshinari M et al. 1998. Mutations in the E-domain of RAR portion of the PML/RAR chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood, 92:374–82.

    PubMed  CAS  Google Scholar 

  • Kizaki M, Ueno H, Yamazoe Y et al. 1996, Mechanisms of retinoid resistance in leukemic cells. Possible role of cytochrome P450 and P-glycoprotein. Blood, 87:725–33.

    PubMed  CAS  Google Scholar 

  • Kogan SC, Bishop JM. 1999. Acute promyelocytic leukemia. From treatment to genetics and back. Oncogene, 18:5261–67.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre P, Thomas G, Gourmel B et al. 1991. Pharmacokinetics of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Leukemia, 5:1054–58.

    PubMed  CAS  Google Scholar 

  • Lin RJ, Egan DA, Evans RM. 1999. Molecular genetics of acute promyelocytic leukemia. Trends Genet, 15:179–84.

    Article  PubMed  CAS  Google Scholar 

  • LoCoco CF, Nervi C, Avvisati G, Mandelli F. 1998. Acute promyelocytic leukemia. A curable disease. Leukemia, 12:1866–80.

    Article  Google Scholar 

  • Lopez-Berestein G, Rosenfeld M, Taraneh S, Mehta K. 1994. Pharmakinetics, tissue distribution, and toxicology of tretinoin incorporated in liposomes. J liposome Res, 4:689–700.

    Article  Google Scholar 

  • Lotan R. 1980. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta, 605:33–91.

    PubMed  CAS  Google Scholar 

  • Lotan R. 1988. Vitamin A analogs (retinoids) as biological response modifiers. Prog Clin Biol Res, 259:261–271.

    PubMed  CAS  Google Scholar 

  • Marasca R, Zucchini P, Galimberti S et al. 1999. Missense mutations in the PML/RARalpha ligand binding domain in ATRA-resistant As(2)O(3) sensitive relapsed acute promyelocytic leukemia. Haematologica, 84:963–68.

    PubMed  CAS  Google Scholar 

  • Mehta K, McQueen T, Neamati N, Collins S, Andreeff M. 1996. Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ, 7:179–86.

    PubMed  CAS  Google Scholar 

  • Mehta K, Sadeghi T, McQueen T, Lopez-Berestein G. 1994. Liposome encapsulation circumvents the hepatic clearance mechanisms of all-trans-retinoic acid. Leuk Res, 18:587–96.

    Article  PubMed  CAS  Google Scholar 

  • Melnick A, Licht JD. 1999. Deconstructing a disease. RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, 93:3167–215.

    PubMed  CAS  Google Scholar 

  • Miller VA, Rigas JR, Muindi JR, Tong WP, Venkatraman E, Kris MG, Warrell RP. 1994. Modulation of all-trans retinoic acid pharmacokinetics by liarozole. Cancer Chemother Pharmacol, 34:522–26.

    Article  PubMed  CAS  Google Scholar 

  • Muindi J, Frankel SR, Miller WH et al. 1992. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations. Implications for relapse and retinoid “resistance" in patients with acute promyelocytic leukemia. Blood, 79:299–303.

    PubMed  CAS  Google Scholar 

  • Nagpal S, Saunders M, Kastner P, Durand B, Nakshatri H, Chambon P. 1992. Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell, 70:1007–19.

    Article  PubMed  CAS  Google Scholar 

  • Nason-Burchenal K, Maerz W, Albanell J, Allopenna J, Martin P, Moore MA, Dmitrovsky E. 1997. Common defects of different retinoic acid resistant promyelocytic leukemia cells are persistent telomerase activity and nuclear body disorganization. Differentiation, 61:321–31.

    Article  PubMed  CAS  Google Scholar 

  • Nervi C, Ferrara FF, Fanelli M et al. 1998. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein. Blood, 92:2244–51.

    PubMed  CAS  Google Scholar 

  • Niu C, Yan H, Yu T et al. 1999. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide. Remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood, 94:3315–24.

    PubMed  CAS  Google Scholar 

  • Ozpolat B, Mehta K, Lopez-Berestein G. 2000. All-trans-retinoic acid (ATRA) induces expression of cytochrome p450RAI (CYP26AI) in human intestinal, liver and acute promyelocytic cells. A potential mechanism contributing to increased ATRA metabolism. Blood, 96: 722a–722a. 11-16-2000 (Abstract).

    Google Scholar 

  • Ozpolat B, Mehta K, Lopez-Berestein G. 2005. Regulation of a highly specific retinoic acid-4-hydroxylase (CYP26A1) enzyme and all-trans-retinoic acid metabolism in human intestinal, liver, endothelial, and acute promyelocytic leukemia cells. Leuk Lymphoma, 46(10):1497.

    Article  PubMed  CAS  Google Scholar 

  • Ozpolat B, Mehta K, Lopez-Berestein G. 2002. All-trans-Retinoic acid-induced expression and regulation of retinoic acid 4-hydroxylase (CYP26) in human promyelocytic leukemia. Am J Hematol, 70(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  • Ozpolat B, Harris M, Tirado-Gomez M, Bradbury EM, Chen X, Lopez-Berestein G. 2008. All-trans-Retinoic Acid and Arsenic Trioxide-induced Suppression of Translational Initiation Involves Death associated protein 5 (DAP5/p97/NAT1) in Leukemia Cell Differentiation. Apoptosis, 4,5:1–11.

    Google Scholar 

  • Pandolfi PP. 1996. PML, PLZF and NPM genes in the molecular pathogenesis of acute promyelocytic leukemia. Haematologica, 81:472–82.

    PubMed  CAS  Google Scholar 

  • Parthasarathy R, Mehta K. 1998. Altered metabolism of all-trans-retinoic acid in liposome-encapsulated form. Cancer Lett, 134:121–28.

    Article  PubMed  CAS  Google Scholar 

  • Pemrick SM, Lucas DA, Grippo JF. 1994. The retinoid receptors. Leukemia, 8 Suppl 3:S1–10.

    PubMed  Google Scholar 

  • Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, Pelicci PG, Miller WH. 1996. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood, 88:2826–32.

    PubMed  CAS  Google Scholar 

  • Reichman TW, Albanell J, Wang X, Moore MA, Studzinski GP. 1997. Downregulation of telomerase activity in HL60 cells by differentiating agents is accompanied by increased expression of telomerase-associated protein. J Cell Biochem, 67:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Nichols MD, Newton DL, Sporn MB. 1979. In vitro metabolism of retinoic acid in hamster intestine and liver. J Biol Chem, 254:6296–302.

    PubMed  CAS  Google Scholar 

  • Robertson KA, Emami B, Collins SJ. 1992. Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood, 80:1885–89.

    PubMed  CAS  Google Scholar 

  • Rousselot P, Hardas B, Patel A et al. 1994. The PML-RAR alpha gene product of the t(15,17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene, 9:545–51.

    PubMed  CAS  Google Scholar 

  • Shao W, Benedetti L, Lamph WW, Nervi C, Miller WH. 1997. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RAR alpha mutation. Blood, 89:4282–89.

    PubMed  CAS  Google Scholar 

  • Shen ZX, Chen GQ, Ni JH et al. 1997. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL). II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 89:3354–60.

    PubMed  CAS  Google Scholar 

  • Slack JL, Willman CL, Andersen JW et al. 2000. Molecular analysis and clinical outcome of adult APL patients with the type V PML-RARalpha isoform. Results from intergroup protocol 0129. Blood, 95:398–403.

    PubMed  CAS  Google Scholar 

  • Slack JL, Gallagher RE. 1999. The molecular biology of acute promyelocytic leukemia. Cancer Treat Res, 99:75–124.

    Article  PubMed  CAS  Google Scholar 

  • Sonneveld E, van den Brink CE, van der Leede BM, Schulkes RK, Petkovich M, van der BB, van der Saag PT. 1998. Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoma cells. Cell Growth Differ, 9:629–37.

    PubMed  CAS  Google Scholar 

  • Tallman MS. 1998. Therapy of acute promyelocytic leukemia. All-trans retinoic acid and beyond. Leukemia, 12 Suppl 1:S37–40.

    PubMed  CAS  Google Scholar 

  • Takeshita A, Shinjo K, Naito K et al. 2000. Role of P-glycoprotein in all-trans retinoic acid (ATRA) resistance in acute promyelocytic leukaemia cells. Analysis of intracellular concentration of ATRA. Br J Haematol, 108:90–92.

    Article  PubMed  CAS  Google Scholar 

  • Tobita T, Takeshita A, Kitamura K et al. 1997. Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid. Blood, 90:967–73.

    PubMed  CAS  Google Scholar 

  • Tsai S, Bartelmez S, Heyman R, Damm K, Evans R, Collins SJ. 1992. A mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line. Genes Dev, 6:2258–69.

    Article  PubMed  CAS  Google Scholar 

  • Vahdat L, Maslak P, Miller WH, Eardley A, Heller G, Scheinberg DA, Warrell RP. 1994. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia. Impact of leukocytosis, low-dose chemotherapy, PMN/RAR-alpha isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood, 84:3843–49.

    PubMed  CAS  Google Scholar 

  • Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP. 1998a. PML is essential for multiple apoptotic pathways. Nat Genet, 20:266–72.

    Article  PubMed  CAS  Google Scholar 

  • Warrell RP. 1997. Clinical and molecular aspects of retinoid therapy for acute promyelocytic leukemia. Int J Cancer, 70:496–97.

    Article  PubMed  Google Scholar 

  • White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M. 1997. cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem, 272:18538–41.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T. 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem, 265:17174–79.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Ozpolat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ozpolat, B. (2009). Resistance to Differentiation Therapy. In: Siddik, Z., Mehta, K. (eds) Drug Resistance in Cancer Cells. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89445-4_10

Download citation

Publish with us

Policies and ethics