Skip to main content

Reprogramming the Ribosome for Selenoprotein Expression: RNA Elements and Protein Factors

  • Chapter
  • First Online:
Recoding: Expansion of Decoding Rules Enriches Gene Expression

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 24))

Abstract

Many of the benefits of the antioxidant selenium can be attributed to its incorporation into selenoenzymes as the 21st amino acid, selenocysteine. Selenocysteine incorporation occurs cotranslationally at UGA codons in a subset of messages in prokaryotes, eukaryotes, and archaea. UGA codons are recoded to specify selenocysteine, rather than termination, by the presence of specialized cis- and trans-acting factors. Here we discuss the mechanism of selenocysteine insertion, the factors which affect efficiency of incorporation, and regulation of mRNA levels. Although much remains to be learned about the multiple factors affecting gene and tissue-specific regulation of the selenoenzymes, significant advances in this regard have been made in understanding the role of selenium status, the expression and selective modification of specific trans-acting factors, and the cis-acting sequences associated with each selenoenzyme message.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D, Petit N, Gartioux C, Ferreiro A, Krol A, Pellegrini N, et al (2006) A single homozygous point mutation in a 3′ untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 7:450–454

    PubMed  CAS  Google Scholar 

  • Behne D, Hammel C, Pfeifer H, Rothlein D, Gessner H, Kyriakopoulos A. (1998) Speciation of selenium in the mammalian organism. Analyst 123:871–873

    Article  PubMed  CAS  Google Scholar 

  • Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta 966:12–21

    Article  PubMed  CAS  Google Scholar 

  • Beier H, Grimm M. (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29:4767–4782

    Article  PubMed  CAS  Google Scholar 

  • Ben Jilani KE, Panee J, He Q, Berry MJ, Li PA (2007) Overexpression of selenoprotein H reduces Ht22 neuronal cell death after UVB irradiation by preventing superoxide formation. Int J Biol Sci 3:198–204

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, Larsen PR (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353:273–276

    Article  PubMed  CAS  Google Scholar 

  • Berry M.J, Banu L, Harney JW, Larsen PR (1993) Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12:3315–3322

    PubMed  CAS  Google Scholar 

  • Berry MJ, Harney JW, Ohama T, Hatfield DL (1994) Selenocysteine insertion or termination: factors affecting UGA codon fate and complementary anticodon: codon mutations. Nucleic Acids Res 22:3753–3759

    Article  PubMed  CAS  Google Scholar 

  • Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, Rousset JP (2004) Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11:619–627

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Friedrichs B, Maurer S, Streicher R. (1997) Determinants of PHGPx expression in a cultured endothelial cell line. Biomed Environ Sci 10:163–176

    PubMed  CAS  Google Scholar 

  • Bubenik JL, Driscoll DM (2007) Altered RNA binding activity underlies abnormal thyroid hormone metabolism linked to a mutation in selenocysteine insertion sequence-binding protein 2. J Biol Chem 282:34653–34662

    Article  PubMed  CAS  Google Scholar 

  • Budiman ME, Bubenik JL, Miniard AC, Middleton LM, Gerber CA, Cash A, Driscoll DM (2009) Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol Cell 35:479–489

    Google Scholar 

  • Buettner C, Harney JW, Berry MJ (1999) The Caenorhabditis elegans homologue of thioredoxin reductase contains a selenocysteine insertion sequence (SECIS) element that differs from mammalian SECIS elements but directs selenocysteine incorporation. J Biol Chem 274:21598–21602

    Article  PubMed  CAS  Google Scholar 

  • Caban K, Kinzy SA, Copeland PR (2007) The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2. Mol Cell Biol 27:6350–6360

    Google Scholar 

  • Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali R, Rao M, Zhong N, Wang S, Feigenbaum L, Lee BJ et al (2007) Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J Biol Chem 282:32591–32602

    Article  PubMed  CAS  Google Scholar 

  • Carlson BA, Xu XM, Gladyshev VN, Hatfield DL (2005) Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 280:5542–5548

    Article  PubMed  CAS  Google Scholar 

  • Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12:408–416

    Google Scholar 

  • Chittum HS, Hill KE, Carlson BA, Lee BJ, Burk RF, Hatfield DL (1997) Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner. Biochim Biophys Acta 1359:25–34

    Article  PubMed  CAS  Google Scholar 

  • Christensen MJ, Burgener KW (1992) Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver. J Nutr 122:1620–1626

    PubMed  CAS  Google Scholar 

  • Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN (2006) SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 59:546–552

    Article  PubMed  CAS  Google Scholar 

  • Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19:306–314

    Article  PubMed  CAS  Google Scholar 

  • Copeland PR, Stepanik VA, Driscoll DM (2001) Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol Cell Biol 21:1491–1498

    Google Scholar 

  • de Jesus LA, Hoffmann PR, Michaud T, Forry EP, Small-Howard A, Stillwell RJ, Morozova N, Harney JW, Berry MJ (2006) Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs: a mechanism for eluding nonsense mediated decay? Mol Cell Biol 26:1795–1805

    Article  PubMed  Google Scholar 

  • Ding F, Grabowski PJ (1999) Identification of a protein component of a mammalian tRNA(Sec) complex implicated in the decoding of UGA as selenocysteine. RNA 5:1561–1569

    Article  PubMed  CAS  Google Scholar 

  • Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S (2005) Mutations in SECISSBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37:1247–1252

    Google Scholar 

  • Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A (2000) Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 19:4796– 4805

    Google Scholar 

  • Feng YX, Yuan H, Rein A, Levin JG (1992) Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol 66:5127–5132

    PubMed  CAS  Google Scholar 

  • Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH, Richard P and others (2004) Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 55:676–686

    Article  PubMed  CAS  Google Scholar 

  • Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP et al. (2002) Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 71:739–749

    Article  PubMed  Google Scholar 

  • Flanigan KM, Kerr L, Bromberg MB, Leonard C, Tsuruda J, Zhang P, Gonzalez-Gomez I, Cohn R, Campbell KP, Leppert M (2000) Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological, radiological, and genetic study. Ann Neurol 47:152–161

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JE, Copeland PR, Driscoll DM, Krol A (2001) The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2. RNA 7:1442–1453

    Google Scholar 

  • Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL (1992) Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci USA 89:9739–9743

    Article  PubMed  CAS  Google Scholar 

  • Grundner-Culemann E, Martin GW 3rd, Harney JW, Berry MJ (1999) Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA 5:625–635

    Article  PubMed  CAS  Google Scholar 

  • Grundner-Culemann E, Martin GW 3rd, Tujebajeva R, Harney JW, Berry MJ (2001) Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis. J Mol Biol 310:699–707

    Google Scholar 

  • Gupta M, Copeland PR (2007) Functional analysis of the interplay between translation termination, selenocysteine codon context, and selenocysteine insertion sequence-binding protein 2. J Biol Chem 282:36797–36807

    Article  PubMed  CAS  Google Scholar 

  • Harrell L, Melcher U, Atkins JF (2002) Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res 30:2011–2017

    Article  PubMed  CAS  Google Scholar 

  • Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    Article  PubMed  CAS  Google Scholar 

  • Hawkes WC, Wilhelmsen EC, Tappel AL (1985) Abundance and tissue distribution of selenocysteine-containing proteins in the rat. J Inorg Biochem 23:77–92

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96:307–310

    Article  PubMed  CAS  Google Scholar 

  • Hilgenfeld R, Böck A, Wilting R (1996) Structural model for the selenocysteine-specific elongation factor SelB. Biochimie 78:971–978

    Article  PubMed  CAS  Google Scholar 

  • Hill KE, Lloyd RS, Burk RF (1993) Conserved nucleotide sequences in the open reading frame and 3′ untranslated region of selenoprotein P mRNA. Proc Natl Acad Sci USA 90:537–541

    Article  PubMed  CAS  Google Scholar 

  • Hill KE, Lyons PR, Burk RF (1992) Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Commun 185:260–263

    Article  PubMed  CAS  Google Scholar 

  • Himeno S, Chittum HS, Burk RF (1996) Isoforms of selenoprotein P in rat plasma. Evidence for a full-length form and another form that terminates at the second UGA in the open reading frame. J Biol Chem 271:15769–15775

    Article  PubMed  CAS  Google Scholar 

  • Hirosawa-Takamori M, Ossipov D, Novoselov SV, Turanov AA, Zhang Y, Gladyshev VN, Krol A, Vorbruggen G, Jackle H. (2009) A novel stem loop control element-dependent UGA read-through system without translational selenocysteine incorporation in Drosophila. FASEB J 23:107–113

    Article  PubMed  CAS  Google Scholar 

  • Hong X, Scofield DG, Lynch M. (2006) Intron size, abundance and distribution within untranslated regions of genes. Mol Biol Evol 23:2392–2404

    Article  PubMed  CAS  Google Scholar 

  • Howard MT, Aggarwal G, Anderson CB, Khatri S, Flanigan KM, Atkins JF (2005) Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. EMBO J 24:1596–1607

    Article  PubMed  CAS  Google Scholar 

  • Howard MT, Moyle MW, Aggarwal G, Carlson BA, Anderson CB (2007) A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec. RNA 13:912–920

    Article  PubMed  CAS  Google Scholar 

  • Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF (2000) Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48:164–169

    Article  PubMed  CAS  Google Scholar 

  • Isken O, Maquat LE (2007) Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21:1833–1856

    Article  PubMed  CAS  Google Scholar 

  • Jameson RR, Diamond AM (2004) A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis. RNA 10:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Jung JE, Karoor V, Sandbaken MG, Lee BJ, Ohama T, Gesteland RF, Atkins JF, Mullenbach GT, Hill KE, Wahba AJ and others (1994) Utilization of selenocysteyl-tRNA[Ser]Sec and seryl-tRNA[Ser]Sec in protein synthesis. J Biol Chem 269:29739–29745

    PubMed  CAS  Google Scholar 

  • Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci USA 105:12485–12490

    Article  PubMed  CAS  Google Scholar 

  • Kim IY, Guimaraes MJ, Zlotnik A, Bazan JF, Stadtman TC (1997) Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Proc Natl Acad Sci USA 94:418–421

    Article  PubMed  CAS  Google Scholar 

  • Kromayer M, Wilting R, Tormay P, Böck A (1996) Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J Mol Biol 262:413–420

    Article  PubMed  CAS  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 125:1438–1446

    PubMed  CAS  Google Scholar 

  • Li G, Rice CM (1993) The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol 67:5062–5067

    PubMed  CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2008) Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol 9:R62

    Article  PubMed  Google Scholar 

  • Low SC, Harney JW, Berry MJ (1995) Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem 270:21659–21664

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Hill KE, Caprioli RM, Burk RF (2002) Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. J Biol Chem 277:12749–12754

    Article  PubMed  CAS  Google Scholar 

  • Maiti B, Arbogast S, Allamand V, Moyle MW, Anderson CB, Richard P, Guicheney P, Ferreiro A, Flanigan KM, Howard MT (2009) A mutation in the SEPN1 selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads to SEPN1-related myopathy. Hum Mutat 30:411–416.

    Google Scholar 

  • Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Martin GW 3rd, Harney JW, Berry MJ (1996) Selenocysteine incorporation in eukaryotes: insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. RNA 2:171–182

    PubMed  CAS  Google Scholar 

  • Martin R, Phillips-Jones MK, Watson FJ, Hill LS (1993) Codon context effects on nonsense suppression in human cells. Biochem Soc Trans 21:846–851

    PubMed  CAS  Google Scholar 

  • McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP (1995) Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA 92:5431–5435

    Article  PubMed  CAS  Google Scholar 

  • Mehlin H, Daneholt B, Skoglund U. (1992) Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell 69:605–613

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JH, Nicol, F, Beckett GJ, Arthur JR (1997) Selenium and iodine deficiencies: effects on brain and brown adipose tissue selenoenzyme activity and expression. J Endocrinol 155:255–263

    Article  PubMed  CAS  Google Scholar 

  • Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Roy SQ, Merlini L, Romero N, Estournet B, Desguerre I, Chaigne D, and others (2001) Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 29:17–18

    Article  PubMed  CAS  Google Scholar 

  • Moriarty PM, Reddy CC, Maquat LE (1998) Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol Cell Biol 18:2932–2939

    PubMed  CAS  Google Scholar 

  • Mottagui-Tabar S, Björnsson A, Isaksson LA (1994) The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J 13:249–257

    PubMed  CAS  Google Scholar 

  • Mottagui-Tabar S, Tuite MF, Isaksson LA. (1998) The influence of 5′ codon context on translation termination in Saccharomyces cerevisiae. Eur J Biochem 257:249–254

    Article  PubMed  CAS  Google Scholar 

  • Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun QA, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB and others (2001) Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol Cell Biol 21:3840–3852

    Article  PubMed  CAS  Google Scholar 

  • Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23:198–199

    Article  PubMed  CAS  Google Scholar 

  • Namy O, Hatin I, Rousset JP (2001) Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2:787–793

    Article  PubMed  CAS  Google Scholar 

  • Nasim MT, Jaenecke S, Belduz A, Kollmus H, Flohe L, McCarthy JE (2000) Eukaryotic selenocysteine incorporation follows a nonprocessive mechanism that competes with translational termination. J Biol Chem 275:14846–14852

    Article  PubMed  CAS  Google Scholar 

  • Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN (2007) Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 282:11960–11968

    Article  PubMed  CAS  Google Scholar 

  • Panee J, Stoytcheva Z, Liu W, Berry M (2007) Selenoprotein H is a redox-sensing HMG family DNA-binding protein that upregulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 282:23759–23765

    Article  PubMed  CAS  Google Scholar 

  • Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK (2006) The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 26:4895–4910

    Google Scholar 

  • Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller W, Haussler D (2006) Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol 2:e33

    Article  PubMed  CAS  Google Scholar 

  • Philipson L, Andersson P, Olshevsky U, Weinberg R, Baltimore D, Gesteland R (1978) Translation of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: enhancement of the Gag-Pol polypeptide with yeast suppressor tRNA. Cell 13:189–199

    Article  PubMed  CAS  Google Scholar 

  • Robinson DN, Cooley L. (1997) Examination of the function of two kelch proteins generated by stop codon suppression. Development 124:1405–1417

    PubMed  CAS  Google Scholar 

  • Saedi MS, Smith CG, Frampton J, Chambers I, Harrison PR, Sunde RA (1988) Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem Biophys Res Commun 153:855–861

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Chu FF, Newburger PE (1993) Sequences in the 3′-untranslated region of the human cellular glutathione peroxidase gene are necessary and sufficient for selenocysteine incorporation at the UGA codon. J Biol Chem 268:11463–11469

    PubMed  CAS  Google Scholar 

  • Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Mansell JB, Harney JW, Carlson BA, Xu SM, Hatfield DL, Berry MJ (2006) Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol 26:2337–2346

    Google Scholar 

  • Squires JE, Stoytchev I, Forry EP, Berry MJ (2007) SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. Mol Cell Biol 27:7848–7855

    Article  PubMed  CAS  Google Scholar 

  • Stoytcheva Z, Tujebajeva RM, Harney JW, Berry MJ (2006) Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck. Mol Cell Biol 26:9177–9184

    Article  PubMed  CAS  Google Scholar 

  • ten Dam EB, Pleij CW, Bosch L (1990) RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4:121–136

    Article  PubMed  Google Scholar 

  • Thermann R, Neu-Yilik G, Deters A, Frede U, Wehr K, Hagemeier C, Hentze MW, Kulozik AE. (1998) Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 17:3484–3494

    Article  PubMed  CAS  Google Scholar 

  • Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ (2000) Decoding apparatus for eukaryotic selenocysteine incorporation. EMBO Rep 2:158–163

    Article  Google Scholar 

  • Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285:1393–1396

    Article  PubMed  CAS  Google Scholar 

  • Walczak R, Westhof E, Carbon P, Krol A (1996) A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2:367–379

    PubMed  CAS  Google Scholar 

  • Weiss SL, Sunde RA (1998) Cis-acting elements are required for selenium regulation of glutathione peroxidase-1 mRNA levels. RNA 4:816–827

    Article  PubMed  CAS  Google Scholar 

  • Wills NM, Gesteland RF, Atkins JF (1991) Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci USA 88:6991–6995

    Article  PubMed  CAS  Google Scholar 

  • Wilting R, Schorling S, Persson BC, Böck A (1997) Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J Mol Biol 266:637–641

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Shen Q, Newburger PE (2000) Recognition and binding of the human selenocysteine insertion sequence by nucleolin. J Cell Biochem 77:507–516

    Article  PubMed  CAS  Google Scholar 

  • Xu XM, Mix H, Carlson BA, Grabowski PJ, Gladyshev VN, Berry MJ, Hatfield DL (2005) Evidence for direct roles of two additional factors, SECp43 and SLA, in the selenoprotein synthesis machinery. J Biol Chem 280:41568–41575

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S (1985) Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci USA 82:1618–1622

    Article  PubMed  CAS  Google Scholar 

  • Zavacki AM, Mansell JB, Chung M, Klimovitsky B, Harney JW, Berry MJ (2003) Coupled tRNASec dependent assembly of the selenocysteine decoding apparatus. Mol Cell 11:773–781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health to MJB and MTH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla J. Berry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Berry, M.J., Howard, M.T. (2010). Reprogramming the Ribosome for Selenoprotein Expression: RNA Elements and Protein Factors. In: Atkins, J., Gesteland, R. (eds) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Nucleic Acids and Molecular Biology, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89382-2_2

Download citation

Publish with us

Policies and ethics