Skip to main content

Functions of the Persistent Na+ Current in Cortical Neurons Revealed by Dynamic Clamp

  • Chapter
  • First Online:
Dynamic-Clamp

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 1))

Abstract

Many cortical neurons and other vertebrate nerve cells are equipped with a persistent Na+ current, I NaP, which operates at membrane potentials near the action potential threshold. This current may strongly influence integration and transduction of synaptic input into spike patterns. However, due to the lack of pharmacological tools for selective blockade or enhancement of I NaP, its impact on spike generation has remained enigmatic. By using dynamic clamp to cancel or add I NaP during intracellular recordings in rat hippocampal pyramidal cells, we were able to circumvent this long-standing problem. Combined with computational modeling our dynamic-clamp experiments disclosed how I NaP strongly affects the transduction of excitatory current into action potentials in these neurons. First, we used computational model simulations to predict functional roles of I NaP, including unexpected effects on spike timing and current–frequency relations. We then used the dynamic-clamp technique to experimentally test and confirm our model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich RW, Corey DP, & Stevens CF (1983). A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306, 436–441.

    Article  PubMed  CAS  Google Scholar 

  • Alonso A & Llinas RR (1989). Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342, 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer C, Schwindt PC, & Crill WE (1993). Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13, 660–673.

    PubMed  CAS  Google Scholar 

  • Andreasen M & Lambert JDC (1999). Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones. J Physiol 519, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM (1981). Sodium channels and gating currents. Physiol Rev 61, 644–683.

    PubMed  CAS  Google Scholar 

  • Astman N, Gutnick MJ, & Fleidervish IA (1998). Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices. J Neurophysiol 80, 1547–1551.

    PubMed  CAS  Google Scholar 

  • Astman N, Gutnick MJ, & Fleidervish IA (2006). Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon. J Neurosci 26, 3465–3473.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Cohen I, Eisner D, Ohba M, & Ojeda C (1979). The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Benoit E & Escande D (1993). Fast K channels are more sensitive to riluzole than slow K channels in myelinated nerve fibre. Pflugers Arch 422, 536–538.

    Article  PubMed  CAS  Google Scholar 

  • Benoit E & Escande D (1991). Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 419, 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, & Matthews G (2001). Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, & Matthews G (2003). Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 23, 2306–2313.

    PubMed  CAS  Google Scholar 

  • Borg-Graham L (1987). Modelling the somatic electrical behavior of hippocampal pyramidal neuron. Massachusetts Institute of Technology. Ref Type: Thesis/Dissertation

    Google Scholar 

  • Borg-Graham L (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. In Cerebral cortex, eds. Ulinski PS, Jones EG, & Peters A, pp. 19–138. Kluwer Academic/Plenum Publishers, New York.

    Chapter  Google Scholar 

  • Brown DA & Adams PR (1980). Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G (2006). Rhythms of the brain buzsaki Oxford University Press, Oxford.

    Book  Google Scholar 

  • Cantrell AR & Catterall WA (2001). Neuromodulation of Na+ channels: An unexpected form of cellular platicity. Nat Rev Neurosci 2, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Chandler WK & Meves H (1966). Incomplete sodium inactivation in internally perfused giant axons from Loligo forbesi. J Physiol 186, 121P–122P.

    PubMed  CAS  Google Scholar 

  • Chao TI & Alzheimer C (1995). Effects of phenytoin on the persistent Na+ current of mammalian CNS neurones. neuroreport 6, 1778–1780.

    Article  PubMed  CAS  Google Scholar 

  • Connor JA & Stevens CF (1971). Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol 213, 31–53.

    PubMed  CAS  Google Scholar 

  • Connors BW, Gutnick MJ, & Prince DA (1982). Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48, 1302–1320.

    PubMed  CAS  Google Scholar 

  • Crill WE (1996). Persistent sodium current in mammalian central neurons. Ann Rev Physiol 58, 349–362.

    Article  CAS  Google Scholar 

  • Dorval AD, Jr. & White JA (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25, 10025–10028.

    Article  PubMed  CAS  Google Scholar 

  • Duprat F, Lesage F, Patel AJ, Fink M, Romey G, & Lazdunski M (2000). The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 57, 906–912.

    PubMed  CAS  Google Scholar 

  • Enomoto A, Han JM, Hsiao CF, & Chandler SH (2007). Sodium currents in mesencephalic trigeminal neurons from Nav1.6 null mice. J Neurophysiol 98, 710–719.

    Article  PubMed  CAS  Google Scholar 

  • French CR & Gage PW (1985). A threshold sodium current in pyramidal cells in rat hippocampus. Neurosci Lett 56, 289–293.

    Article  PubMed  CAS  Google Scholar 

  • French CR, Sah P, Buckett KJ, & Gage PW (1990). A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 95, 1139–1157.

    Article  PubMed  CAS  Google Scholar 

  • Fricker D & Miles R (2000). EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28, 559–569.

    Article  PubMed  CAS  Google Scholar 

  • Gilly W & Armstrong CM (1984). Threshold channels[mdash]a novel type of sodium channel in squid giant axon. Nature 309, 448–450.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SAN, Bockenhauer D, O’Kelly I, & Zilberberg N (2001). Potassium leak channels and the KCNK family of two-p-domain subunits. Nat Rev Neurosci 2, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Burgos G & Barrionuevo G (2001). Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. J Neurophysiol 86, 1671–1684.

    PubMed  CAS  Google Scholar 

  • Gu N, Vervaeke K, & Storm JF (2007). BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580, 859–882.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL (1948). The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107, 165–181.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL & Huxley AF (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hotson JR, Prince DA, & Schwartzkroin PA (1979). Anomalous inward rectification in hippocampal neurons. J Neurophysiol 42, 889–895.

    PubMed  CAS  Google Scholar 

  • Hu GY, Hvalby O, Lacaille JC, Piercey B, Ostberg T, & Andersen P (1992). Synaptically triggered action potentials begin as a depolarizing ramp in rat hippocampal neurones in vitro. J Physiol 453, 663–687.

    PubMed  CAS  Google Scholar 

  • Hu H, Vervaeke K, & Storm JF (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545, 783–805.

    Google Scholar 

  • Huang CS, Song JH, Nagata K, Yeh JZ, & Narahashi T (1997). Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. J Pharmacol Exp Ther 282, 1280–1290.

    PubMed  CAS  Google Scholar 

  • Jensen MS, Azouz R, & Yaari Y (1996). Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol 492 (Pt 1), 199–210.

    PubMed  CAS  Google Scholar 

  • Jeub M, Beck H, Siep E, Ruschenschmidt C, Speckmann E-J, Ebert U, Potschka H, Freichel C, Reissmuller E, & Loscher W (2002). Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats. Neuropharmacology 42, 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, & Barres BA (2001). Differential control of clustering of the sodium channels Nav1.2 and Nav1.6 at developing CNS nodes of ranvier. Neuron 30, 105–119.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D (1965). The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta Physiol Scand 65, 87–100.

    Article  Google Scholar 

  • Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, & Stuart GJ (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11, 178–186.

    Article  PubMed  CAS  Google Scholar 

  • Komai S, Licznerski P, Cetin A, Waters J, Denk W, Brecht M, & Osten P (2006). Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat Neurosci 9, 1125–1133.

    Article  PubMed  CAS  Google Scholar 

  • Kuo CC & Bean BP (1994). Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 46, 716–725.

    PubMed  CAS  Google Scholar 

  • Lanthorn T, Storm J, & Andersen P (1984). Current-to-frequency transduction in CA1 hippocampal pyramidal cells: Slow prepotentials dominate the primary range firing. Exp Brain Res 53, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Leung LS & Yu HW (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J Neurophysiol 79, 1592–1596.

    PubMed  CAS  Google Scholar 

  • Lien CC & Jonas P (2003). Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23, 2058–2068.

    PubMed  CAS  Google Scholar 

  • Lipowsky R, Gillessen T, & Alzheimer C (1996). Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J Neurophysiol 76, 2181–2191.

    PubMed  CAS  Google Scholar 

  • Llinas R & Sugimori M (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305, 171–195.

    PubMed  CAS  Google Scholar 

  • Llinas RR (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664.

    Article  PubMed  CAS  Google Scholar 

  • Losonczy A & Magee JC (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307.

    Article  PubMed  CAS  Google Scholar 

  • Ma M & Koester J (1996). The role of K+ currents in frequency-dependent spike broadening in aplysia R20 neurons: A dynamic-clamp analysis. J Neurosci 16, 4089–4101.

    PubMed  CAS  Google Scholar 

  • Madison DV & Nicoll RA (1984). Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354, 319–331.

    PubMed  CAS  Google Scholar 

  • Magee JC & Johnston D (1995). Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487 (Pt 1), 67–90.

    PubMed  CAS  Google Scholar 

  • Magistretti J & Alonso A (1999). Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: A whole-cell and single-channel study. J Gen Physiol 114, 491–509.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti J & Alonso A (2002). Fine gating properties of channels responsible for persistent sodium current generation in entorhinal cortex neurons. J Gen Physiol 120, 855–873.

    Article  PubMed  CAS  Google Scholar 

  • Mattson RH, Cramer JA, Collins JF, Smith DB, gado-Escueta AV, Browne TR, Williamson PD, Treiman DM, McNamara JO, & McCutchen CB (1985). Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N Engl J Med 313, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Huguenard JR (1992). A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68, 1384–1400.

    Article  PubMed  CAS  Google Scholar 

  • Migliore M, Cook EP, Jaffe DB, Turner DA, & Johnston D (1995). Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73, 1157–1168.

    PubMed  CAS  Google Scholar 

  • Patlak J (1991). Molecular kinetics of voltage-dependent Na+ channels. Physiol Rev 71, 1047–1080.

    PubMed  CAS  Google Scholar 

  • Pedarzani P & Storm JF (1993). PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 11, 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  • Peters HC, Hu H, Pongs O, Storm JF, & Isbrandt D (2005). Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 8, 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, & Paulsen O (2000). Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J Physiol 529, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Pinto RD, Elson RC, Szucs A, Rabinovich MI, Selverston AI, & Abarbanel HDI (2001). Extended dynamic clamp: Controlling up to four neurons using a single desktop computer and interface. J Neurosci Methods 108, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Curtis R, Lawson D, Gilbride K, Ge P, DiStefano PS, Silos-Santiago I, Catterall WA, & Scheuer T (2001). Differential modulation of sodium channel gating and persistent sodium currents by the [beta]1, [beta]2, and [beta]3 subunits. Mol Cell Neurosci 18, 570–580.

    Article  PubMed  CAS  Google Scholar 

  • Raman IM & Bean BP (1999). Ionic currents underlying spontaneous action potentials in isolated cerebellar purkinje neurons. J Neurosci 19, 1663–1674.

    PubMed  CAS  Google Scholar 

  • Rosenkranz JA & Johnston D (2007). State-dependent modulation of amygdala inputs by dopamine-induced enhancement of sodium currents in layer V entorhinal cortex. J Neurosci 27, 7054–7069.

    Article  PubMed  CAS  Google Scholar 

  • Schneidman E, Freedman B, & Segev I (1998). Channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comp 10, 1679–1703.

    Article  CAS  Google Scholar 

  • Schwindt PC & Crill WE (1995). Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74, 2220–2224.

    PubMed  CAS  Google Scholar 

  • Shao LR, Halvorsrud R, Borg-Graham L, & Storm JF (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521 Pt 1, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55, 349–374.

    Article  PubMed  CAS  Google Scholar 

  • Skaugen E & Walløe L (1979). Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol Scand 107, 343–363.

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom CE, Schwindt PC, Chubb MC, & Crill WE (1985). Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 53, 153–170.

    PubMed  CAS  Google Scholar 

  • Stafstrom CE, Schwindt PC, & Crill WE (1982). Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 236, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA, & Sejnowski TJ (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685.

    Article  PubMed  CAS  Google Scholar 

  • Storm JF (1989). An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J Physiol 409, 171–190.

    PubMed  CAS  Google Scholar 

  • Storm JF (1990). Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83, 161–187.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G & Sakmann B (1995). Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G (1999). Voltage-activated sodium channels amplify inhibition in neocortical pyramidal neurons. Nat Neurosci 2, 144–150.

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ & Sakmann B (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Taddese A & Bean BP (2002). Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33, 587–600.

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Jefferys JG, Miles R, Whittington MA, & Toth K (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481, 79–95.

    PubMed  CAS  Google Scholar 

  • Urban NN, Henze DA, & Barrionuevo G (1998). Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. J Neurophysiol 80, 1558–1561.

    PubMed  CAS  Google Scholar 

  • Urbani A & Belluzzi O (2000). Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12, 3567–3574.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg CA & Bezanilla F (1991). A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J 60, 1511–1533.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf CH (1988). Synchronization of cortical activity and its putative role in information processing and learning. Int Rev Neurobiol 20, 225–340.

    Article  Google Scholar 

  • Vervaeke K, Hu H, Graham LJ, & Storm JF (2006). Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49, 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Vogalis F, Storm JF, & Lancaster B (2003). SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur J Neurosci 18, 3155–3166.

    Article  PubMed  Google Scholar 

  • White JA, Rubinstein JT, & Kay AR (2000). Channel noise in neurons. Trends Neurosci 23, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR (2004). Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7, 904–905.

    Article  Google Scholar 

  • Yue C, Remy S, Su H, Beck H, & Yaari Y (2005). Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells. J Neurosci 25, 9704–9720.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work was supported by the Norwegian Research Council (NFR) through FUGE, NevroNor, and the Norwegian Centre of Excellence programs, and by HFSP for Research Grant RGP0049 to L.J.G. and J.F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.F. Storm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Storm, J., Vervaeke, K., Hu, H., Graham, L. (2009). Functions of the Persistent Na+ Current in Cortical Neurons Revealed by Dynamic Clamp. In: Bal, T., Destexhe, A. (eds) Dynamic-Clamp. Springer Series in Computational Neuroscience, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89279-5_8

Download citation

Publish with us

Policies and ethics