Skip to main content

Using the Dynamic Clamp to Dissect the Properties and Mechanisms of Intrinsic Thalamic Oscillations

  • Chapter
  • First Online:
Dynamic-Clamp

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 1))

Abstract

During different stages of vigilance, the thalamus engages in a range of rhythmic activities from the slow (<1 Hz), delta (δ) (1–4 Hz) and spindle (7–14 Hz) waves that permeate the brain during sleep and anaesthesia to the faster oscillations in the alpha (α) and beta/gamma (β/γ) (>15 Hz) bands that occur during wakefulness. In recent years, it has been shown that several of these oscillations are associated with intrinsic rhythmic activity in individual thalamocortical (TC) neurons, with these intrinsic oscillations also being readily observable in recordings of TC neurons from thalamic slice preparations. In this chapter we will show how the dynamic-clamp technique provides an extremely useful means for studying the intricate cellular mechanisms and key properties of some of theses intrinsic oscillations. We will mainly focus on the intrinsic δ or so-called pacemaker (∼1–2 Hz) oscillation and the slow (<1 Hz) oscillation but will also briefly discuss how the dynamic-clamp technique can be utilized to study additional important oscillatory phenomena in the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Borbély AA (1997) Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213–22.

    Article  PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (1998) Cellular substrates and laminar profile of sleep K-complex. Neuroscience 82:671–86.

    Article  PubMed  CAS  Google Scholar 

  • Blethyn KL, Hughes SW, Tóth TI et al. (2006) Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 26:2474–86.

    Article  PubMed  CAS  Google Scholar 

  • BoSmith RE, Briggs I, Sturgess NC (1993) Inhibitory action of zeneca ZD 7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial cells. Br J Pharmacol 110:343–49.

    PubMed  CAS  Google Scholar 

  • Butera RJ Jr, Wilson CG, Delnegro CA et al. (2001) A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. IEEE Trans Biomed Eng 48:1460–70.

    Article  PubMed  Google Scholar 

  • Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. J Neurosci 15:604–22.

    PubMed  CAS  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol (London) 414:587–604.

    CAS  Google Scholar 

  • Crunelli V, Cope DW, Hughes SW (2006). Thalamic T-type calcium channels and NREM sleep. Cell Calcium 40:175–90.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli V, Lightowler S, Pollard CE (1989) A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol (London) 413:543–61.

    CAS  Google Scholar 

  • Crunelli V, Tóth TI, Cope DW et al. (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–29.

    Article  PubMed  CAS  Google Scholar 

  • Debay D, Wolfart J, Le Franc Y et al. (2004) Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. J Physiol (Paris) 98:540–58.

    Article  Google Scholar 

  • Deschenes M, Paradis M, Roy JP et al. (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51:1196–219.

    PubMed  CAS  Google Scholar 

  • Destexhe A, Hughes SW, Rudolph M et al. (2007) Are corticothalamic ‘up’ states fragments of wakefulness? Trends Neurosci 30:334–42.

    Article  PubMed  CAS  Google Scholar 

  • Dorval AD, Christini DJ, White JA (2001) Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Ann Biomed Eng 29:897–907.

    Article  PubMed  CAS  Google Scholar 

  • Emri Z, Antal K, Tóth TI et al. (2000) Backpropagation of the delta oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons. Neuroscience 98:111–27.

    Article  PubMed  CAS  Google Scholar 

  • Godwin DW, Van Horn SC, Erisir A et al. (1996) Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J Neurosci 16:8181–92.

    PubMed  CAS  Google Scholar 

  • Hernandez-Cruz A, Pape HC (1989) Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol 61:1270–83.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–44.

    CAS  Google Scholar 

  • Hughes SW, Cope DW, Blethyn KL et al. (2002) Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–58.

    Article  Google Scholar 

  • Hughes SW, Cope DW, Crunelli V (1998) Dynamic clamp study of Ih modulation of burst firing and delta oscillations in thalamocortical neurons in vitro. Neuroscience 87:541–50.

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Cope DW, Tóth TI et al. (1999) All thalamocortical neurones possess a T-type Ca2+ ‘window’ current that enables the expression of bistability-mediated activities. J Physiol (London) 517:805–15.

    Article  CAS  Google Scholar 

  • Hughes SW, Lőrincz M, Cope DW et al. (2004) Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42:253–68.

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Lőrincz ML, Cope DW et al. (2008) NeuReal: an interactive simulation system for implementing artificial dendrites and large hybrid networks. J Neurosci Methods 169:290–301.

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting. MIT Press, Cambridge MA.

    Google Scholar 

  • Jahnsen H, Llinás R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (London) 349:205–26.

    Google Scholar 

  • Jahnsen H, Llinás R (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (London) 349:227–47.

    Google Scholar 

  • Leresche N, Jassik-Gerschenfeld D, Haby M et al. (1990) Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113:72–7.

    Article  PubMed  CAS  Google Scholar 

  • Leresche N, Lightowler S, Soltesz I et al. (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol (London) 441:155–74.

    CAS  Google Scholar 

  • Lopes da Silva FH, van Lierop TH, Schrijer CF et al. (1973) Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol 35:627–39.

    Article  Google Scholar 

  • Lőrincz ML, Crunelli V, Hughes SW (2008) Cellular dynamics of cholinergically induced alpha (8–13 Hz) rhythms in sensory thalamic nuclei in vitro. J Neurosci 28: 660–71.

    Article  PubMed  Google Scholar 

  • McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–88

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (London) 431:291–318.

    CAS  Google Scholar 

  • Pedroarena C, Llinás R (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci USA 21:724–8.

    Article  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83: 117–161.

    PubMed  CAS  Google Scholar 

  • Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–65.

    Article  PubMed  CAS  Google Scholar 

  • Rougeul-Buser A, Buser P (1997) Rhythms in the alpha band in cats and their behavioural correlates. Int J Psychophysiol 26:191–203.

    Article  PubMed  CAS  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF et al. (1993a) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–5.

    Google Scholar 

  • Sharp AA, O'Neil MB, Abbott LF et al. (1993b) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–94.

    Google Scholar 

  • Soltesz, I, Lightowler S, Leresche N et al. (1991) Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol (Lond) 441:175–97.

    CAS  Google Scholar 

  • Steriade M., Curro Dossi R, Paré D et al. (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–400.

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Amzica F, Contreras D (1996) Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 16:392–417.

    PubMed  CAS  Google Scholar 

  • Steriade M., Contreras D, Amzica F et al. (1996) Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci 16:2788–808.

    PubMed  CAS  Google Scholar 

  • Steriade M., Contreras D, Curro Dossi R (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: Scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–99.

    PubMed  CAS  Google Scholar 

  • Timofeev I, Steriade M (1996) Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76:4152–68.

    PubMed  CAS  Google Scholar 

  • Tóth TI, Crunelli V (1992) Computer simulation of the pacemaker oscillations of thalamocortical cells. Neuroreport 3:65–8.

    Article  PubMed  Google Scholar 

  • Tóth TI, Hughes SW, Crunelli V (1998) Analysis and biophysical interpretation of bistable behaviour in thalamocortical neurons. Neuroscience 87:519–523.

    Article  PubMed  Google Scholar 

  • Turner JP, Anderson CM, Williams SR et al. (1997) Morphology and membrane properties of neurones in the cat ventrobasal thalamus in vitro. J Physiol (London) 505:707–726.

    Article  CAS  Google Scholar 

  • Turner JP, Salt TE (2000) Synaptic activation of the group I metabotropic glutamate receptor mGlu1 on the thalamocortical neurons of the rat dorsal lateral geniculate nucleus in vitro. Neuroscience 100:493–505.

    Article  PubMed  CAS  Google Scholar 

  • von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–64.

    Article  Google Scholar 

  • von Krosigk M, Monckton JE, Reiner PB et al. (1999) Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Neuroscience 91:7–20.

    Article  Google Scholar 

  • Williams SR, Tóth TI, Turner JP et al. (1997a) The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol 505:689–705.

    Google Scholar 

  • Williams SR, Turner JP, Hughes SW et al. (1997b) On the nature of anomalous rectification in thalamocortical neurones of the cat ventro-basal complex in vitro. J Physiol 505:727–47.

    Google Scholar 

  • Zhu L, Blethyn KL, Cope DW et al. (2006) Nucleus- and species-specific properties of the slow (<1 Hz) sleep oscillation in thalamocortical neurons. Neuroscience 141:621–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our ongoing work is supported by the Wellcome Trust, grants 71436, 78403 and 78311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart W. Hughes .

Editor information

Editors and Affiliations

Appendix

Appendix

The majority of the work (i.e. Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9) described in this chapter was carried out on a personal computer with MS-DOS based software written in a combination of C++ and assembler and using an Axon Instruments Digidata 1200 ADC/DAC system (Hughes, Cope and Crunelli 1998; Hughes et al. 1999, 2002). These experiments were typically performed at sampling/update rates of 10–20 kHz although rates of up to 50 kHz could be achieved. The experiments depicted in Figs. 10 and 11 were carried out with the NeuReal software system (Hughes et al. 2008). NeuReal is an interactive system that runs on Windows XP, is also written in a combination of C++ and assembler, and uses the Microsoft DirectX application programming interface (API) to achieve high-performance graphics. Whilst not being a hard real-time system, NeuReal offers reliable performance and tolerable jitter levels up to an update rate of 50 kHz. A key feature of NeuReal is that rather than being a simple dedicated dynamic clamp, it operates as a fast simulation system within which neurons can be specified as either real or simulated. By using the Digidata 1200 hardware-based representation of membrane potential at all stages of computation and by employing simple look-up tables (see also Butera et al. 2001), on a modern personal computer (PC) NeuReal can typically simulate over 1,000 independent Hodgkin and Huxley (Hodgkin and Huxley 1952)-type conductances in real-time. For example, on a PC possessing a 2.26 GHz Intel Pentium processor and 2 GB of RAM and for an integration step size of 0.1 ms, equivalent to an update/sampling rate of 10 kHz in a dynamic-clamp experiment, NeuReal can compute 2,070 independent activation/inactivation variables and, therefore, simulate 690 inactivating and 690 non-inactivating conductances at sub-real-time speeds.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hughes, S.W., Lörincz, M., Cope, D.W., Crunelli, V. (2009). Using the Dynamic Clamp to Dissect the Properties and Mechanisms of Intrinsic Thalamic Oscillations. In: Bal, T., Destexhe, A. (eds) Dynamic-Clamp. Springer Series in Computational Neuroscience, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89279-5_15

Download citation

Publish with us

Policies and ethics