Skip to main content

Intrinsic and Network Contributions to Reverberatory Activity: Reactive Clamp and Modeling Studies

  • Chapter
  • First Online:
  • 697 Accesses

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 1))

Abstract

Cortical cells belong to small interconnected ensembles. These ensembles have the potential of being activated in a reverberatory fashion in vitro and in vivo, spontaneously or in response to stimulation. We combined computer simulations and in vitro intracellular recording from prefrontal cortical neurons to explore the elicitation, modulation, and termination of these reverberations. In computer simulations, we studied the reverberating activity of small networks of neurons connected with realistic stochastic synaptic transmission and concluded that about 40 excitatory cells and a few interneurons were sufficient to reproduce the membrane and firing characteristics observed in vivo. Using a variant of the dynamic-clamp technique in vitro, we then stimulated the assembly and triggered self-sustained activity mimicking the activity recorded during the delay period of a working memory task in the behaving monkey. The onset of sustained activity depended on the number of action potentials elicited by the cue-like stimulation. Too few spikes failed to provide enough NMDA current to drive sustained reverberations; too many spikes activated a slow intrinsic hyperpolarizing current that prevented spiking; an intermediate number of spikes produced sustained activity. The firing rate during the delay period could be effectively modulated by the standard deviation of the inhibitory background synaptic noise without significant changes in the background firing rate before cue-onset. These results suggest that the balance between fast feedback inhibition and slower AMPA and NMDA feedback excitation is critical in initiating persistent activity, that intrinsic currents may determine which cell contributes to the onset or offset of reverberations and that the maintenance of persistent activity may be regulated by the amount of correlated background inhibition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Casagrande VA, Xu X, Sary G (2002) Static and dynamic views of visual cortical organization. Prog Brain Res 136:389–408.

    Article  PubMed  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90:9576–9580.

    Article  PubMed  CAS  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782.

    Article  PubMed  CAS  Google Scholar 

  • Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28 k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 341:95–116.

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4:311–316.

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180.

    Article  PubMed  CAS  Google Scholar 

  • Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:283–288.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547.

    PubMed  CAS  Google Scholar 

  • Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538–1552.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1996) Kinetic models of synaptic transmission. In: Methods in neuronal modeling (Koch C, Segev I, eds). Cambridge: MIT Press.

    Google Scholar 

  • Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803–818.

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3(Suppl):1184–1191.

    Article  PubMed  CAS  Google Scholar 

  • El Boustani S, Pospischil M, Rudolph-Lilith M, Destexhe A (2007) Activated cortical states: experiments, analyses and models. J Physiol Paris 101:99–109.

    Article  PubMed  Google Scholar 

  • Fellous JM, Sejnowski TJ (2003) Regulation of persistent activity by background inhibition in an in vitro model of a cortical microcircuit. Cerebral Cortex 13:1232–1241.

    Article  PubMed  Google Scholar 

  • Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811–829.

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL, Bacon SJ (1996a) Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. J Comp Neurol 364:567–608.

    Google Scholar 

  • Gabbott PL, Bacon SJ (1996b) Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364:609–636.

    Google Scholar 

  • Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ (1997) Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465–499.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Goldman MS, Maldonado P, Abbott LF (2002) Redundancy reduction and sustained firing with stochastic depressing synapses. J Neurosci 22:584–591.

    PubMed  CAS  Google Scholar 

  • Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol 78:1199–1211.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Burgos G, Barrionuevo G, Lewis DA (2000) Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb Cortex 10:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Graziano MS, Hu XT, Gross CG (1997) Coding the locations of objects in the dark. Science 277:239–241.

    Article  PubMed  CAS  Google Scholar 

  • Hahn TT, Sakmann B, Mehta MR (2007) Differential responses of hippocampal subfields to cortical up-down states. Proc Natl Acad Sci USA 104:5169–5174.

    Article  PubMed  CAS  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545.

    Article  PubMed  CAS  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA (2007) Enhancement of visual responsiveness by spontaneous local network activity in vivo. J Neurophysiol 97:4186–4202.

    Article  PubMed  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435.

    Article  PubMed  CAS  Google Scholar 

  • Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G (2000) Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. J Neurophysiol 84:2799–2809.

    PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman KL, Battaglia FP, Harris K, MacLean JN, Marshall L, Mehta MR (2007) The upshot of up states in the neocortex: from slow oscillations to memory formation. J Neurosci 27:11838–11841.

    Article  PubMed  CAS  Google Scholar 

  • Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806–1814.

    PubMed  CAS  Google Scholar 

  • Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–564.

    Article  PubMed  CAS  Google Scholar 

  • Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsaki G (2006) Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52:871–882.

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10:1830–1837.

    PubMed  CAS  Google Scholar 

  • Krimer LS, Goldman-Rakic PS (2001) Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci 21:3788–3796.

    PubMed  CAS  Google Scholar 

  • Lewis BL, O'Donnell P (2000) Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D(1) dopamine receptors. Cereb Cortex 10:1168–1175.

    Article  PubMed  CAS  Google Scholar 

  • Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD (2007) Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci USA 104:347–352.

    Article  PubMed  CAS  Google Scholar 

  • Maass W, Zador AM (1999) Dynamic stochastic synapses as computational units. Neural Comput 11:903–917.

    Article  PubMed  CAS  Google Scholar 

  • Mao BQ, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R (2001) Dynamics of spontaneous activity in neocortical slices. Neuron 32:883–898.

    Article  PubMed  CAS  Google Scholar 

  • McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci USA 97:6173–6178.

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13:1219–1231.

    Article  PubMed  Google Scholar 

  • Melchitzky DS, Sesack SR, Pucak ML, Lewis DA (1998) Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex. J Comp Neurol 390:211–224.

    Article  PubMed  CAS  Google Scholar 

  • Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319:1543–1546.

    Article  PubMed  CAS  Google Scholar 

  • Navratilova Z, Fellous JM (2008) A biophysical model of cortical up and down states: excitatory-inhibitory balance and H-current. In: International School on Neural Nets – Dynamic Brain. Erice, Sicily: Springer.

    Google Scholar 

  • Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537.

    Article  PubMed  CAS  Google Scholar 

  • Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J Neurophysiol 79:1450–1460.

    PubMed  Google Scholar 

  • Piwkowska Z, Pospischil M, Brette R, Sliwa J, Rudolph-Lilith M, Bal T, Destexhe A (2008) Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation. J Neurosci Methods 169:302–322.

    Article  PubMed  Google Scholar 

  • Pratt WE, Mizumori SJ (2001) Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task. Behav Brain Res 123:165–183.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290.

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 98:301–306.

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896.

    PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1936.

    PubMed  CAS  Google Scholar 

  • Shi WX, Zheng P, Liang XF, Bunney BS (1997) Characterization of dopamine-induced depolarization of prefrontal cortical neurons. Synapse 26:415–422.

    Article  PubMed  CAS  Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350.

    PubMed  CAS  Google Scholar 

  • Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946.

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbeck GE, Ornstein LS (1930) On the theory of Brownian motion. Phys Rev 36:823–841.

    Article  CAS  Google Scholar 

  • Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455–463.

    Article  PubMed  CAS  Google Scholar 

  • Waters J, Helmchen F (2006) Background synaptic activity is sparse in neocortex. J Neurosci 26:8267–8277.

    Article  PubMed  CAS  Google Scholar 

  • Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG (2000) Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26:659–670.

    Article  PubMed  CAS  Google Scholar 

  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layers V–VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16:1922–1935.

    PubMed  CAS  Google Scholar 

  • Zheng P, Zhang XX, Bunney BS, Shi WX (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 91:527–535.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Fellous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fellous, JM., Sejnowski, T.J., Navratilova, Z. (2009). Intrinsic and Network Contributions to Reverberatory Activity: Reactive Clamp and Modeling Studies. In: Bal, T., Destexhe, A. (eds) Dynamic-Clamp. Springer Series in Computational Neuroscience, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89279-5_11

Download citation

Publish with us

Policies and ethics