Abstract
Neuronal development proceeds in an orderly fashion during development of the embryo and fetus. There are certain stages of development that are consistent across individuals during gestation. Following birth, changes in the brain are related to genetics, biology, and environmental stimulation. This chapter will provide an overview of development pre- and postnatally, and discuss challenges that develop due to environmental aspects (stress, substance abuse, toxins, etc.).
Keywords
Executive Function Corpus Callosum Frontal Lobe Left Hemisphere Neural Tube
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- Akerman, B. A., & Fischbein, S. (1991). Twins: Are they at risk? A longitudinal study of twins and nontwins from birth to 18 years of age. Acta Geneticae Medicae et Gemellologiae: Twin Research, 40, 29–40.CrossRefGoogle Scholar
- Annett, M. (1985). Left, right, hand and brain: the right shift theory. Hillsdale, NJ: Lawrence Erlbaum, Associates.Google Scholar
- Barnet, A. B., Vincentini, M., & Campos, S. M. (1974). EEG sensory evoked responses (ERs) in early malnutrition. Paper presented at the Society for Neuroscience, St. Louis, MO.Google Scholar
- Baron, I. S. (2004). Neuropsychological evaluation of the child. New York: Oxford University Press.Google Scholar
- Becker, M. G., Isaac, W., & Hynd, G. W. (1987). Neuropsychological development of nonverbal behaviors attributed to ‘frontal lobe’ functioning. Developmental Neuropsychology, 3, 275–298.CrossRefGoogle Scholar
- Best, C. T., & Queens, H. F. (1989). Baby, it's in your smile: Right hemiface bias in infant emotional expressions. Developmental Psychology, 25, 264–276.CrossRefGoogle Scholar
- Brodal, P. (2004). The central nervous system: Structure and function (Vol. 3). New York: Oxford University Press.Google Scholar
- Buchsbaum, M. S., Friedman, J., Buchsbaum, B. R., Chu, K.-W., Hazlett, E. A., Newmark, R., et al. (2006). Diffusion tensor imaging in schizophrenia. Biological Psychiatry, 60, 1181–1187.CrossRefGoogle Scholar
- Burns, L., Mattick, R. P., Lim, K., & Wallace, C. (2007). Methadone in pregnancy: Treatment retention and neonatal outcomes. Addiction, 102, 264–270.CrossRefGoogle Scholar
- Caesar, P. (1983). Old and new facts about perinatal brain development. Journal of Child Psychology and Psychiatry, 34, 101–109.CrossRefGoogle Scholar
- Carlson, N. R. (2007). Physiology of behavior (9th ed.). Boston: Allyn & Bacon.Google Scholar
- Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Vaiturzis, A. C., & Dickstein, D. P. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53(7), 607–616.CrossRefGoogle Scholar
- Cody, J., Semrud-Clikeman, M., Hardies, L. J., Lancaster, J., Ghidoni, P., Schaub, R. L., et al. (2005). Growth hormone benefits children with 18q deletions. American Journal of Human Genetics, 143A, 1181–1190, 1–7.Google Scholar
- Conel, J. (1939–1959). The postnatal development of the human cerebral cortex (Vol. 1–6). Cambridge, MA: Harvard University Press.Google Scholar
- Cook, E. H., & Leventhal, B. L. (1992). Neuropsychiatric disorders of childhood and adolescence. In S. C. Yudofsky & R. E. Hales (Eds.), The American psychiatric press textbook of neuropsychiatry (2nd ed., pp. 639–662). Washington, DC: American Psychiatric Association.Google Scholar
- Cotter, A., & Potter, J. E. (2006). Mother to child transmission. In J. Beal, J. J. Orrick, & K. Alfonson (Eds.), HIV/AIDS: Primary care guide (pp. 503–515). Norwalk, CT: Crown House Publishing Limited.Google Scholar
- Davidson, R. J. (1984). Affect, cognition, and hemispheric specialization. In C. E. Izard, J. Kagan, & R. Zajonc (Eds.), Emotion, cognition, and behavior. New York: Cambridge University Press.Google Scholar
- Davidson, R. J. (1994). Asymmetric brain function, affective style, and psychopathology: The role of early experience and plasticity. Development and Psychopathology, 6, 741–758.CrossRefGoogle Scholar
- Davidson, R. J., & Fox, N. A. (1982). Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science, 218, 1235–1237.CrossRefGoogle Scholar
- Davidson, R. J., & Fox, N. A. (1989). Frontal brain asymmetry predicts infants' response to maternal separation. Journal of Abnormal Psychology, 98, 127–131.CrossRefGoogle Scholar
- Denckla, M. B. (2007). Executive function: Binding together the definitions of attention-deficit/hyperactivity disorder and learning disabilities. In L. Meltzer (Ed.), Executive function in education: From theory to practice (pp. 5–18). New York: Guilford.Google Scholar
- Deruelle, C., & de Schonen, S. (1991). Hemispheric asymmetry in visual pattern processing in infants. Brain and Cognition, 16, 151–179.CrossRefGoogle Scholar
- de Schonen, S., Gil de Diaz, M., & Mathivet, E. (1986). Hemispheric asymmetry in face processing in infancy. In H. D. Ellis, M. A. Jeeves, F. Newcome, & A. Young (Eds.), Aspects of face processing (pp. 96–120). Dordecht, Nijhoff.Google Scholar
- Dow-Edwards, D. L., Benveniste, H., Behnke, M., Bandstra, E. S., Singer, L. T., Hurd, Y. L., et al. (2006). Neuroimaging of prenatal drug exposure. Neurotoxicology and Teratology, 28, 386–402.CrossRefGoogle Scholar
- Duane, D. (1991). Biological foundations of learning disabilities. In J. Obrzut & G. W. Hynd (Eds.), Neuropsychological foundations of learning disabilities (pp. 7–27). San Diego: Academic Press.Google Scholar
- Entus, A. K. (1977). Hemispheric asymmetry in processing of dichotically presented speech and nonspeech stimuli by infants. In S. J. Segalowitz & F. A. Gruber (Eds.), Language development and neurological theory (pp. 63–73). New York: Academic Press.CrossRefGoogle Scholar
- Fox, N. A., & Davidson, R. J. (1986). Taste-elicited changes in facial signs of emotion and the symmetry of brain electrical activity in human newborns. Neuropsychologia, 24, 417–422.CrossRefGoogle Scholar
- Fredrik, E., Macoveanu, J., Olesen, P., Tegner, J., & Klingberg, T. (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Journal of Cognitive Neuroscience, 19, 750–760.CrossRefGoogle Scholar
- Freeman, N. C. G. (2007). Risk assessment for environmental health. In M. G. Robson & W. A. Toscano (Eds.), Risk assessment for environmental health (pp. 315–344). San Francisco: Jossey-Bass.Google Scholar
- Gardiner, M. F., & Walter, D. O. (1977). Evidence of hemispheric specialization from infant EEG. In S. Harnad, R. Doty, L. Goldstein, J. Jays, & G. Krauthamer (Eds.), Lateralization in the nervous system (pp. 481–500). Orlando, FL: Academic Press.CrossRefGoogle Scholar
- Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive neuroscience: the biology of the mind (2nd ed.). New York: W.W. Norton & Company.Google Scholar
- Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21(8), 1185–1201.CrossRefGoogle Scholar
- Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551–560.CrossRefGoogle Scholar
- Gilger, J. W., Hanebuth, E., Smith, S. S., & Pennington, B. F. (1996). Differential risk for developmental reading disorders in the offspring of compensated versus noncompensated parents. Reading and Writing: An Interdiciplinary Journal, 8, 407–417.Google Scholar
- Gilles, F. H., & Gomez, I.-G. (2005). Developmental neuropathology of the second half of gestation. Early Human Development, 81, 245–253.CrossRefGoogle Scholar
- Hahn, W. K. (1987). Cerebral lateralization of function. From infancy through childhood. Psychological Bulletin, 101, 376–392.PubMedGoogle Scholar
- Hammer, M. (1977). Lateral responses to speech and noise stimuli. Unpublished dissertation, New York University. Dissertation Abstracts International, 38, 1439–B.Google Scholar
- Hashimoto, T., Tayama, M., Miyazaki, M., Fujii, E., Harada, M., Miyoshi, H., et al. (1995). Developmental brain changes investigated with proton magnetic resonance spectroscopy. Developmental Medicine & Child Neurology, 37, 398–405.CrossRefGoogle Scholar
- Heilman, K. M., Blonder, L. X., Bowers, D., & Valenstein, E. (2003). Emotional disorders associated with neurological diseases. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (4th ed., pp. 447–478). New York: Oxford.Google Scholar
- Heilman, K. M., Watson, R. T., & Valenstein, E. (2003). Neglect and related disorders. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (4 ed., pp. 296–246). New York: Oxford.Google Scholar
- Hepper, P. G., Shadidullah, S., & White, R. (1991). Handedness in the human fetus. Neuropsychologia, 29, 1107–1112.CrossRefGoogle Scholar
- Hutchinson, M. K., & Sandall, S. R. (1995). Congenital TORCH infections in infants and young children: Neurodevelopmental sequelae and implications for intervention. Topics in Early Childhood Special Education, 15, 65–82.CrossRefGoogle Scholar
- Ingram, D. (1975). Motor asymmetries in young children. Neuropsychologia, 13, 95–102.CrossRefGoogle Scholar
- King, S., Laplante, D., & Joober, R. (2005). Understanding putative risk factors for schizophrenia: retrospective and prospective studies. Journal of Psychiatry and Neuroscience, 30, 342–348.PubMedPubMedCentralGoogle Scholar
- Klein, S. P., & Rosenfield, W. D. (1980). The hemispheric specialization for linguistic and non-linguistic tactile stimuli in third grade children. Cortex, 16, 205–212.CrossRefGoogle Scholar
- Kolb, B., & Fantie, B. (1989). Development of the child’s brain and behavior. In C. R. Reynolds & E. F. Janzen (Eds.), Handbook of child clinical neuropsychology (pp. 115–144). New York: Plenum Press.Google Scholar
- Kolb, B., & Whishaw, I. Q. (2003). Fundamentals of human neuropsychology (5th ed.). New York: Worth Publishers.Google Scholar
- Leech, S. L., Larkby, C. A., Day, R., & Day, N. L. (2006). Predictors and correlates of high levels of depression and anxiety symptoms among children at age 10. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 223–230.CrossRefGoogle Scholar
- Lesage, J., Sebaai, N., Leonhardt, M., Dutriez-Casteloot, I., Breton, C., Deloof, S., et al. (2006). Perinatal maternal undernutrition programs the offspring hypothalamo-pituitary-adrenal (HPA) axis. Stress: The International Journal on the Biology of Stress, 9, 183–198.CrossRefGoogle Scholar
- Little, R. E., Anderson, K. W., Ervin, C. H., Worthington Roberts, B., & Clarren, S. K. (1989). Maternal alcohol use during breast-feeding and infant mental and motor development at one year. New England Journal of Medicine, 321, 425–430.CrossRefGoogle Scholar
- Lubs, H., Rabin, M., Carlan-Saucier, K., Gross-Glenn, K., Duara, R., Levin, B. E., et al. (1991). Genetic bases of developmental dyslexia: Molecular studies. In J. E. Obzrut & G. W. Hynd (Eds.), Neuropsychological foundations of learning disabilities: A handbook of issues, methods and practice (pp. 49–78). San Diego: Harcourt Brace Jovanovich.Google Scholar
- Luria, A. B. (1980). Higher cortical functions in man (2nd ed.). New York: Basic Books.CrossRefGoogle Scholar
- Majovski, L. V. (1989). Higher cortical functions in children: A developmental perspective. In C. R. Reynolds & E. Fletcher-Janzen (Eds.), Handbook of clinical child neuropsychology (pp. 41–67). New York: Plenum Press.CrossRefGoogle Scholar
- Malaspina, D., Quitkin, H. M., & Kaufman, C. A. (1992). Epidemiology and genetics of neuropsychiatric disorders. In S. C. Yudofsky & R. E. Hales (Eds.), The American Psychiatric Press textbook of neuropsychiatry (2nd ed., pp. 187–226). Washington, D.C.: American Psychiatric Association.Google Scholar
- Martens, S. E., Rijken, M., Stoelhorst, G. M. S., van Zweiten, P. H. T., Zwinderman, A. H., Wit, J. M., et al. (2003). Is hypotension a major risk factor for neurological morbidity at term age in very preterm infants? Early Human Development, 75, 79–89.CrossRefGoogle Scholar
- Marx, J., Naude, H., & Pretorius, E. (2006). The effects of hypo- and hypervitaminosis A and its involvement in fetal nervous system development and post-natal sensorimotor functioning-A review. British Journal of Developmental Disabilities, 52, 47–64.CrossRefGoogle Scholar
- Molfese, D. L., & Molfese, V. L. (1979). Hemisphere and stimulus differences as reflected in the cortical responses of newborn infants to speech stimuli. Developmental Psychology, 15, 505–511.CrossRefGoogle Scholar
- Molfese, V. J., & Molfese, D. L. (2002). Environmental and social influences on reading skills as indexed by brain and behavioral responses. Annals of Dyslexia, 52, 121–137.CrossRefGoogle Scholar
- Molfese, D. L., Freeman, R. B., & Palermo, D. S. (1975). The ontogeny of brain lateralization for speech and nonspeech stimuli. Brain and Language, 2, 356–368.CrossRefGoogle Scholar
- Morton, S. M. B. (2006). Maternal nutrition and fetal growth and development. In P. Gluckman & M. Hanson (Eds.), Developmental origins of health and disease. (pp. 98–129). New York: Cambridge University Press.CrossRefGoogle Scholar
- Mueller, B. R., & Bale, T. L. (2007). Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiology and Behavior, 91, 55–65.CrossRefGoogle Scholar
- Nasrallah, H. (1992). The neuropsychiatry of schizophrenia. In S. C. Yudofsky & R. E. Hales (Eds.), The American psychiatric press textbook of neuropsychiatry (Vol. 2, pp. 621–638). Washington, D.C.: American Psychiatric Press.Google Scholar
- Noland, J. S., Singer, L. T., Mehta, S. K., & Super, D. M. (2003). Prenatal cocaine/polydrug exposure and infant performance on an executive functioning task. Developmental Neuropsychology, 24, 499–517.CrossRefGoogle Scholar
- O’Reilly, R. L., Lane, A., Cernovsky, Z. Z., & O’Callaghan, E. (2001). Neurological soft signs, minor physical anomalies and handedness in schizophrenia. European Journal of Psychiatry, 15, 189–192.Google Scholar
- Papalia, D., & Olds, S. W. (1992). Human Development (5th ed.). New York: McGraw-Hill.Google Scholar
- Passler, M., Isaac, W., & Hynd, G. W. (1985). Neuropsychological development of behavior attributed to frontal lobe functioning in children. Developmental Neuropsychology, 1, 349–370.CrossRefGoogle Scholar
- Pennington, B. F. (1991). Diagnosing learning disorders. New York: Guilford Press.Google Scholar
- Pennington, B. F. (2002). Genes and brain: Individual differences and human universals. In M. H. Johnson, Y. Munakata, & R. O. Gilmore (Eds.), Brain development and cognition: A reader (Vol. 2, pp. 494–508). Malden, MA: Blackwell Publishing.Google Scholar
- Raine, A. (2002). Annotation: The role of prefrontal deficits, low autonomic arousal and early health factors in the development of antisocial and aggressive children. Journal of Child Psychology and Psychiatry, 43, 417–434.CrossRefGoogle Scholar
- Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119 (Pt 5), 1763–1774.Google Scholar
- Ris, M. D., Dietrich, K. N., Succop, P. A., Berger, O. G., & Bornschein, R. L. (2004). Early exposure to lead and neuropsychological outcome in adolescence. Journal of the International Neuropsychological Society, 10, 261–270.CrossRefGoogle Scholar
- Rosen, G. D., Galaburda, A. M., & Sherman, G. F. (1990). The ontongeny of anatomic asymmetry: Constraints derived from basic mechanisms. In A. B. Scheibel & A. F. Wechsler (Eds.), Neurobiology of higher cognitive function (pp. 215–238). New York: Guilford Press.Google Scholar
- Saxby, L., & Bryden, M. P. (1984). Left-ear superiority in children for processing auditory material. Developmental Psychology, 20, 72–80.CrossRefGoogle Scholar
- Saxby, L., & Bryden, M. P. (1985). Left-visual field advantage in children for processing visual emotional stimuli. Developmental Psychology, 21, 253–261.CrossRefGoogle Scholar
- Scheibel, A. B. (1990). Dendritic correlates of higher cognitive function. In A. B. Scheibel & A. F. Wechsler (Eds.), Neurobiology of higher cognitive function (pp. 239–270). New York: Guilford Press.Google Scholar
- Semrud-Clikeman, M. (2007). Social competence in children. New York: Springer.CrossRefGoogle Scholar
- Semrud-Clikeman, M., Pliszka, S. R., Lancaster, J., & Liotti, M. (2006). Volumetric MRI differences in treatment-naïve vs chronically treated children with ADHD. Neurology, 67(1023–1027).CrossRefGoogle Scholar
- Snow, D. M., Carman, H. M., Smith, J. D., Booze, R. M., Welch, M. A., & Mactutus, C. F. (2004). Cocaine-induced inhibition of process outgrowth in locus coeruleus neurons: Role of gestational exposure period and offspring sex. International Journal of Developmental Neuroscience, 22, 297–308.CrossRefGoogle Scholar
- Sowell, E. R., Trauner, D. A., Gamst, A., & Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study. Developmental Medicine & Child Neurology, 44, 4–16.CrossRefGoogle Scholar
- Streissguth, A., Bookstein, F. L., Barr, H. M., Sampson, P. D., O’Malley, K., & Young, J. K. (2004). Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. Journal of Developmental and Behavioral Pediatrics, 25, 228–238.CrossRefGoogle Scholar
- U.S. Surgeon General. (2005). Advisory on Alcohol Use in Pregnancy. 2005Google Scholar
- Suy, A., Martinez, E., Coll, O., Lonca, M., Palacio, M., de Lazzari, E., et al. (2006). Increased risk of pre-eclampsia and fetal death in HIV-infected pregnant women receiving highly active antiretroviral therapy. AIDS, 20, 59–66.CrossRefGoogle Scholar
- Thatcher, R. W. (1991). Maturation of the human frontal lobes: Physiological evidence for staging. Developmental Neuropsychology, 7, 397–419.Google Scholar
- Thatcher, R. W. (1996). Neuroimaging of cyclic cortical reorganization during human development. In R. W. Thatcher, G. R. Lyon, J. Rumsey & N. A. Krasnegor (Eds.), Developmental neuroimaging: Mapping the development of brain and behavior (pp. 91–106). San Diego: Academic Press.Google Scholar
- van den Bergh, B. R. H., Mulder, E. J. H., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience & Biobehavioral Reviews, 29, 237–258.CrossRefGoogle Scholar
- Volger, G. P., DeFries, J. C., & Decker, S. N. (1984). Family history as an indicator of risk for reading disability. Journal of Learning Disabilities, 10, 616–624.CrossRefGoogle Scholar
- Walker, S. P., Thame, M. M., Chang, S. M., Bennett, F., & Forester, T. E. (2007). Association of growth in utero with cognitive function at age 6–8 years. Early Human Development, 83, 355–360.CrossRefGoogle Scholar
- Wigg, N. R. (2001). Low level lead exposure and children. Journal of Paediatrics and Child Health, 37, 423–425.CrossRefGoogle Scholar
- Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain, 112, 799–835.CrossRefGoogle Scholar
- Witelson, S. F., & Kigar, D. L. (1988). Aysmmetry in brain function follows asymmetry in anatomical form: Gross, microscope, postmortem and imaging studies. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 1, pp. 111–142). Amsterdam: Elsevier Science Publishers.Google Scholar
- Witelson, S. F., & Pallie, W. (1973). Left hemisphere specialization for language in the newborn: Neuroanatomical evidence of asymmetry. Brain(96), 641–646.CrossRefGoogle Scholar
- Yoshihiro, M., Sasaki, S., Tanaka, K., Yokoyama, T., Ohya, Y., Fukushima, W., et al. (2006). Dietary folate and vitamins B1, 2, 6 and 12 intake and the risk of postpartum depression in Japan: The Osaka maternal and child health study. Journal of Affective Disorders, 96, 133–138.CrossRefGoogle Scholar
- Young, G., Segalowitz, J., Misek, P., Alp, I. E., & Boulet, R. (1983). Is early reaching left-handed? Review of manual specialization research. In G. Young, S. J. Segalowitz, C. Corter, & S. E. Trehaub (Eds.), Manual specialization and the developing brain (pp. 13–32). New York: Academic Press.CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2009