Skip to main content
  • 3525 Accesses

Abstract

Electromagnetic (EM) radiation impinging on a substrate is redistributed according to the radiation distribution equation T + R + A = 1, where T, R and A are the transmittance, reflectance, and absorbance of the matter respectively. Reflectance is a fundamental phenomenon which occurs when the EM waves propagates across a boundary between two media that have different refractive indices. If sometimes it is a disturbing effect which must be avoided, its control over defined ranges of the electromagnetic spectrum permits to obtain a vast variety of optical filtering properties. One of the most effective ways to control the reflectance of a substrate is to deposit very thin low-loss dielectric films having typical thickness of λ/4 and λ/2, known as interference coatings. By suitable variations in the design and the choice of the materials, properties such as antireflection, high reflection, neutral beam splitting, short and long wave pass, dichroic, monochromatic and notch filtering can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Hecht, Optics, Addison-Wesley Publ. Co., 2nd edition (1989)

    Google Scholar 

  2. M. Born, E. Wolf, Principles of Optics, Pergamon Press, Oxford (1993)

    Google Scholar 

  3. I.E. Greivenkamp Jr., Interference, in: Handbook of Optics, M. Bass, E. W. Van Stryland, Optical Society of America, D.R. Williams, W.L. Wolfe (Editors), Mc Graw-Hill Inc., Volume 1, Chapter 2, 2nd edition (1995)

    Google Scholar 

  4. H.A. MacLeod, Thin-film optical filters, Adam Hilger Ltd., Bristol, 2nd edition (1985)

    Google Scholar 

  5. A. Dobrowolski, Optical properties of films and coatings, in: Handbook of Optics, M. Bass, E. W. Van Stryland, Optical Society of America, D.R. Williams, W.L. Wolfe (Editors), Mc Graw-Hill Inc., Volume 1, Chapter 42, 2nd edition (1995)

    Google Scholar 

  6. H. Dislich, Thin films from the sol-gel process, in: Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, L.C. Klein (ed.), Noyes Publications, 50 (1988)

    Google Scholar 

  7. http://www.schott.com/architecture/english

    Google Scholar 

  8. http://www.denglas.com

    Google Scholar 

  9. http://www.prinzoptics.de

    Google Scholar 

  10. P.W. Oliveira, H. Krug, A. Frantzen, M. Mennig, H. Schmidt, Generation of wet-chemical AR-coatings on plastic substrates by use of polymerizable nanoparticles, in: SPIE “Sol-Gel Optics IV”, B.S. Dunn, J.D. MacKenzie, E.J.A. Pope, H.K. Schmidt, M. Yamane (eds.),3136, 452 (1997)

    Google Scholar 

  11. M. Mennig, P.W. Oliveira, H.K. Schmidt, Interference coatings on glass based on photopoly-merizable Nanomer material, Thin Solid Films,351, 99 (1999)

    Article  CAS  Google Scholar 

  12. D. Chen, Y. Yan, E. Westenberg, D. Niebauer, N. Sakaitani, S.R. Chaudhuri, Development of Anti-Reflection (AR) Coating on Plastic Panels for Display Applications,”J. of Sol-Gel Sci. and Tech. 19, 77(2000)

    Article  CAS  Google Scholar 

  13. P. Prené, C. Bounin, L. Beaurain, Y. Montouillont, K. Vallé, P. Belleville, The CEA sol-gel technology for coatings, in: Proc. of the 4th ICCG, C.P. Klages, H. J. Gläser, M.A. Aegerter (eds.), 167 (2002)

    Google Scholar 

  14. P. Belleville, P. Prené, F. Mennechez, C. Bouigeon, Sol-gel antireflective spin-coating process for large-size shielding windows, in: Proc. SPIE “Sol-Gel Optics VI”, E. Pope, H. Schmidt, B. Dunn, S. Shibata,4804, 69 (2002)

    Google Scholar 

  15. Y. Ono, Y. Ohtani, K. Hiratsuka, T. Morimoto, A new antireflective and antistatic doublelayered coating for CRTS, SID92 Digest, 511

    Google Scholar 

  16. T. Ohishi, S. Maekawa, T. Ishikawa, D. Kamoto, Preparation and properties of antireflective/antistatic thin films for cathode ray tubes prepared by sol-gel method using photoirradiation, .J. Sol-Gel Science and Technology,8, 511 (1997)

    CAS  Google Scholar 

  17. Y. Ishihara, T. Hirai, C. Sakurai, T. Koyanagi, H. Nishida, M. Komatsu, Applications of the particle ordering technique for conductive anti-reflection films, Thin Solid Films,411, 50 (2002)

    Article  CAS  Google Scholar 

  18. T. Morimoto, Y. Sanada, H. Tomonaga, Wet chemical functional coatings for automotive glasses and cathode ray tubes, Thin Solid Films,392, 214 (2001)

    Article  CAS  Google Scholar 

  19. B. MacLeod, G. Sonek, Motheye surfaces reflect little light, Laser Focus World,109, (1999)

    Google Scholar 

  20. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, H. Heinzel, D. Sporn, W. Döll, V. Wittwer, Subwavelength-structured antireflective surface on glass, Thin Solid Films,351 (1–2), 73 (1999)

    Article  CAS  Google Scholar 

  21. V. Wittwer, P. Nitz, A. Gombert, Application of microstructured surface in architectural glazings, in: Proceedings of the 4th ICCG, C.P. Klages, H.J. Gläser, M.A. Aegerter (eds.), 643 (2002)

    Google Scholar 

  22. C. Schelle, M. Mennig, H. Krug, G. Jonschker, H. Schmidt, One step antiglare sol-gel coating for screens by sol-gel techniques, J. Non-Cryst. Solids,218, 163 (1997)

    Article  CAS  Google Scholar 

  23. M.A. Aegerter, N. Al-Dahoudi, Wet-chemical processing of transparent and antiglare conductive ITO coating on plastic substrates, J. Sol-Gel Science and Technology,27, 81 (2003)

    Article  CAS  Google Scholar 

  24. N.J. Arfsten, A. Eberle, J. Otto, A. Reich, Investigations on the angle-dependent dip coating technique (ADDC) for the production of optical filters, J. Sol-Gel Science and Technology,8, 1099(1997)

    CAS  Google Scholar 

  25. P.W. Oliveira, M. Mennig, H. Schmidt, INM Jahrestätigkeitsbericht, 18 (1999)

    Google Scholar 

  26. M. Mennig, P.W. Oliveira, A. Frantzen, H. Schmidt, Multilayer NIR reflective coatings on transparent plastic substrates from photopolymerizable nanoparticulate sols, Thin Solid Films,351, 328(1999)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oliveira, P.W., Mennig, M., Aegerter, M.A., Schmidt, H. (2004). Interference Coatings. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics