Skip to main content

Study of Biological Assemblies by Ultrafast Fluorescence Spectroscopy

  • Chapter
Book cover Reviews in Fluorescence 2007

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2007))

Abstract

Application of ultrafast time resolved fluorescence spectroscopy to the study of dynamics in biological assemblies is discussed. The recent results obtained using femtosecond time resolution and large scale computer simulations have significantly improved our understanding of the primary steps in solvation dynamics, FRET and other processes. Dynamics in many systems ranging from proteins (both in native and molten globule state) and DNA to micelles (tri-block co-polymer micelles and ionic liquid micelles) are discussed. Perhaps, the most interesting application is spatial resolution of solvation dynamics by variation of excitation wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Bhattacharyya, Organized assemblies probed by fluorescence spectroscopy, Reviews in Fluorescence 2005, edited by C. D. Geddes, J. R. Lakowicz, (Springer, New York, 2005) p. 1–23.

    Chapter  Google Scholar 

  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer/Plenum, New York, 1999).

    Google Scholar 

  3. B. Bagchi, Water dynamics in the hydration layer around proteins and micelles, Chem. Rev. 105(9), 3197–3219 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. S. K. Pal, A. H. Zewail, Dynamics of water in molecular recognition, Chem. Rev. 104(4), 2099–2124 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. K. Bhattacharyya, Solvation dynamics and proton transfer in supramolecular assemblies, Acc. Chem. Res. 36(2), 95–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. N. Nandi, K. Bhattacharyya, B. Bagchi, Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems, Chem. Rev. 100(6), 2013–2045 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. K. Uekama, F. Hirayama, T. Irie, Cyclodextrin drug carrier systems, Chem. Rev. 98(5), 2045–2076 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. M. Khajehpour, T. Troxler, V. Nanda, J. M. Vanderkooi, Melittin as model system for probing interactions between proteins and cyclodextrins, Proteins 55(2), 275–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. M. Hoshino, M. Imamura, H. Ikehara, Y. Hamai, Fluorescence enhancement of benzene derivatives by forming inclusion complexes with β-cyclodextrin in aqueous solutions, J. Phys. Chem. 85(13), 1820–1823 (1981).

    Article  CAS  Google Scholar 

  10. P. Sen, D. Roy, S. K. Mondal, K. Sahu, S. Ghosh, K. Bhattacharyya, Fluorescence anisotropy decay and solvation dynamics of coumarin 153 in methyl β-cyclodextrin, J. Phys. Chem. A 109(43), 9716–9722 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. M. El-Kemary, J. A. Organero, L. Santos, A. Douhal, Effect of cyclodextrin nanocavity confinement on the photorelaxation of the cardiotonic drug milrinone, J. Phys. Chem. B 110(29), 14128–14134 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. A. Douhal, M. Sanz, L. Tormo, Femtochemistry of orange II in solution and in chemical and biological nanocavities, Proc. Nat. Acad. Sci. USA 102(52), 18807–18812 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. L. Tormo, J. A. Organero, A. Douhal, Effect of nanocavity confinement on the relaxation of anesthetic analogues: Relevance to encapsulated drug photochemistry, J. Phys. Chem. B 109(38), 17848–17854 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. L. Tormo, A. Douhal, Caging anionic structure of a proton transfer dye in a hydrophobic nanocavity with a cooperative H-bonding, J. Photochem. Photobiol. A 173(3), 358–364 (2005).

    Article  CAS  Google Scholar 

  15. D. Roy, S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, K. Bhattacharyya, Temperature dependence of fluorescence anisotropy decay and solvation dynamics of coumarin 153 in γ-cyclodextrin aggregates, J. Phys. Chem. A 109(33), 7359–7364 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. G. Pistolis, I. Balomenou, Cyclodextrin cavity size effect on the complexation and rotational dynamics of the laser dye 2,5-diphenyl-1,3,4-oxadiazole: From singly occupied complexes to their nanotubular self-assemblies, J. Phys. Chem. B 110(33), 16428–16438 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. G. Li, L. B. McGown, Molecular nanotube aggregates of β- and γ-cyclodextrins linked by diphenylhexatrienes, Science, 264(5156), 249–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. S. K. Mondal, D. Roy, K. Sahu, P. Sen, K. Bhattacharyya, Hydration dynamics of 4-aminophthalimide in a substituted β-cyclodextrin nanocavity, J. Photochem. Photobiol. A 173 (2005) 334.

    Article  CAS  Google Scholar 

  19. S. Vajda, R. Jimenez, S. J. Rosenthal, V. Fidler, G. R. Fleming, E. W. Castner Jr., Femtosecond to nanosecond solvation dynamics in water and inside the γ-cyclodextrin cavity, J. Chem. Soc. Faraday Trans. 91(5), 867–873 (1995).

    Article  CAS  Google Scholar 

  20. N. Nandi, B. Bagchi, Ultrafast solvation dynamics of an ion in the γ-cyclodextrin cavity: Role of restricted environment, J. Phys. Chem. 100(33), 13914–13919 (1996).

    Article  CAS  Google Scholar 

  21. N. Nandi, S. Roy, B. Bagchi, Ultrafast solvation dynamics in water: Isotope effects and comparison with experimental results, J. Chem. Phys. 102(3), 1390–1397 (1995).

    Article  CAS  Google Scholar 

  22. S. K. Mondal, K. Sahu, P. Sen, D. Roy, S. Ghosh, K. Bhattacharyya, Excited state proton transfer of pyranine in a γ-cyclodextrin cavity, Chem. Phys. Lett. 412(1–3), 228–234 (2005).

    Article  CAS  Google Scholar 

  23. K. Mortensen, J. S. Pedersen, Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution, Macromolecules 26(4), 805–812 (1993).

    Article  CAS  Google Scholar 

  24. I. Goldmints, G. Yu, C. Booth, K. A. Smith, T. A. Hatton, Structure of (deuterated PEO)-(PPO)-(deuterated PEO) block copolymer micelles as determined by small angle neutron scattering, Langmuir 15(5), 1651–1656 (1999).

    Article  CAS  Google Scholar 

  25. P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association, Macromolecules 27(9), 2414–1425 (1994).

    Google Scholar 

  26. C. D. Grant, K. E. Steege, M. R. Bunagan, E. W. Castner Jr., Microviscosity in multiple regions of complex aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), J. Phys. Chem. B 109(47), 22273–22284 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. C. D. Grant, M. R. DeRitter, K. E. Steege, T. A. Fadeeva, E. W. Castner Jr., Fluorescence probing of interior, interfacial, and exterior regions in solution aggregates of poly(ethylene oxide)poly(propylene oxide)-poly(ethylene oxide) triblock copolymers, Langmuir 21(5), 1745–1752 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. G. B. Dutt, How critical micelle temperature influences rotational diffusion of hydrophobic probes solubilized in aqueous triblock copolymer solutions, J. Phys. Chem. B 109(11), 4923–4928 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. A. P. Demchenko, The red-edge effects: 30 years of exploration, Luminescence 17(1), 19–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. H. Raghuraman, A. Chattopadhyay, Organization and dynamics of melittin in environments of graded hydration. A fluorescence approach, Langmuir 19(24), 10332–10341 (2003).

    Article  CAS  Google Scholar 

  31. P. Sen, S. Ghosh, K. Sahu, S. K. Mondal, D. Roy, K. Bhattacharyya, A femtosecond study of excitation wavelength dependence of solvation dynamics in a PEO-PPO-PEO tri-block copolymer micelle, J. Chem. Phys. 124(20), 204905-1-8 (2006).

    Google Scholar 

  32. P. Sen, T. Satoh, K. Bhattacharyya, K. Tominaga, Excitation wavelength dependence of solvation dynamics of coumarin 480 in a lipid vesicle, Chem. Phys. Lett. 411(4–6), 339–344 (2005).

    Article  CAS  Google Scholar 

  33. P. Sen, S. Ghosh, S. K. Mondal, K. Sahu, D. Roy, K. Bhattacharyya, K. Tominaga, A femtosecond study of excitation wavelength dependence of solvation dynamics in a vesicle, Chem. Asian. J. 1(1–2), 188–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. P. Sen, S. Mukherjee, A. Halder, P. Dutta, K. Bhattacharyya, Solvation dynamics in a worm-like CTAB micelle, Res. Chem. Intermed. 31(1–3), 135–144 (2005).

    Article  CAS  Google Scholar 

  35. K. Sahu, D. Roy, S. K. Mondal, A. Halder, K. Bhattacharyya, Study of solvation dynamics in an ormosil. CTAB in a sol-gel matrix, J. Phys. Chem. B 108(32), 11971–11975 (2004).

    Article  CAS  Google Scholar 

  36. P. Sen, S. Mukherjee, A. Patra, K. Bhattacharyya, Solvation dynamics of DCM in a DPPC vesicle entrapped in a sodium silicate derived sol-gel matrix, J. Phys. Chem. B 109(8), 3319–3323 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares, D. W. Armstrong, Solvation effects and micelle formation in ionic liquids, Chem. Comm. (19), 2444–2445 (2003).

    Google Scholar 

  38. Y. Gao, S. Han, B. Han, G. Li, D. Shen, Z. Li, J. Du, W. Hou, G. Zhang, TX-100/water/ 1-butyl-3-methylimidazolium hexafluorophosphate microemulsions, Langmuir 21(13), 5681–5684 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. P. Mukherjee, J. A. Crank, M. Halder, D. W. Armstrong, J. W. Petrich, Assessing the roles of the constituents of ionic liquids in dynamic solvation: Comparison of an ionic liquid in micellar and bulk form, J. Phys. Chem. A 110(37), 10725–10730 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. A. Chakraborty, D. Seth, D. Chakrabarty, P. Setua, N. Sarkar, Dynamics of solvent and rotational relaxation of coumarin 153 in room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate confined in Brij-35 micelles: A picosecond time-resolved fluorescence spectroscopic study, J. Phys. Chem. A 109(49), 11110–11116 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. D. Seth, A. Chakraborty, P. Setua, N. Sarkar, Interaction of ionic liquid with water in ternary microemulsions (triton X-100/water/1-butyl-3-methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of coumarin 153 and coumarin 151, Langmuir 22(18), 7768–7775 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. N. M. Correa, N. Levinger, What can we learn from a molecular probe? New insights on the behavior of C343 in homogeneous solutions and AOT reverse micelles, J. Phys. Chem. B 110(27), 13050–13061 (2005).

    Google Scholar 

  43. M. R. Harpham, B. M. Ladanyi, N. E. Levinger, The effect of the counterion on water mobility in reverse micelles studied by molecular dynamics simulations, J. Phys. Chem. B 109 (35), 16891–16900 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. F Sterpone, G Marchetti, C Pierleoni, M. Marchi, Molecular modeling and simulation of water near model micelles: Diffusion, rotational relaxation and structure at the hydration interface, J. Phys. Chem. B 110(23), 11504–11510 (2006).

    Article  Google Scholar 

  45. K. Chattopadhyay, S. Mazumdar, Stabilization of partially folded states of cytochrome C in aqueous surfactant: Effects of ionic and hydrophobic interactions, Biochemistry 42(49), 14606–14613 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. A. K. Shaw, R. Sarkar, S. K. Pal, Direct observation of DNA condensation in a nano-cage by using a molecular ruler, Chem. Phys. Lett. 408(4–6), 366–370 (2005).

    Article  CAS  Google Scholar 

  47. D. Seth, D. Chakrabarty, A. Chakraborty, N. Sarkar, Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles, Chem. Phys. Lett. 401(4–6), 546–552 (2005).

    Article  CAS  Google Scholar 

  48. K. Sahu, S. Ghosh, S. K. Mondal, B. C. Ghosh, P. Sen, D. Roy, K. Bhattacharyya, ltrafast fluorescence resonance energy transfer (FRET) in a micelle, J. Chem. Phys. 125(4), 044714-1-8 (2006).

    Google Scholar 

  49. H. Singh, B. Bagchi, Non-Forster distance and orientation dependence of energy transfer and applications of fluorescence resonance energy transfer to polymers and nanoparticles: How accurate is the spectroscopic ruler with 1/R6 rule? Curr. Sci. 89(10), 1710–1719 (2005).

    CAS  Google Scholar 

  50. K. S. Mali, G. B. Dutt, T. Mukherjee, Polyene photoisomerization rates: Are they distinct in aqueous block copolymer micellar solutions and gels? J. Chem. Phys. 124(5), 054904-1-6 (2006).

    Google Scholar 

  51. K. S. Mali, G. B. Dutt, T. Mukherjee, Photoisomerization of a carbocyanine derivative in the reverse phases of a block copolymer: Evidence for the existence of water droplets, Langmuir 22(16), 6837–6842 (2006).

    Google Scholar 

  52. R. A. Marcus, Electron transfer reactions in chemistry: Theory and experiments (Nobel lecture), Angew. Chem. Int. ed. Engl. 32(8), 1111–1222 (1993).

    Article  Google Scholar 

  53. G. J. Kavaranos, Fundamentals of Photoinduced Electron Transfer (VCH, New York, 1993).

    Google Scholar 

  54. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, J. R. Miller, Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions, J. Phys. Chem. 90(16), 3673–3683 (1986).

    Article  CAS  Google Scholar 

  55. M. Kumbhakar, S. Nath, H. Pal, A. V. Sapre, T. Mukherjee, Photoinduced electron transfer from aromatic amines to coumarin dyes in sodium dodecyl sulfate micellar solutions, J. Chem. Phys. 119(1), 388–399 (2003).

    Article  CAS  Google Scholar 

  56. D. Chakraborty, A. Chakrabarty, D. Seth, N. Sarkar, Photoinduced electron transfer between coumarin dyes and electron donating solvents in cetyltrimethyl ammonium bromide micelles: Evidence for Marcus inverted region, Chem. Phys. Lett. 382(5–6), 508–517 (2003).

    Article  CAS  Google Scholar 

  57. S. Ghosh, K. Sahu, S. K. Mondal, P. Sen, K. Bhattacharyya, A femtosecond study of photo-induced electron transfer from dimethylaniline to coumarin dyes in a CTAB micelle, J. Chem. Phys. 125(5), 054509-1-7 (2006).

    Google Scholar 

  58. E. A. McArthur, K. B. Eisenthal, Ultrafast excited-state electron transfer at an organic liquid/aqueous interface, J. Am. Chem. Soc. 128(4), 1068–1069 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. N. Nandi, B. Bagchi, Dielectric relaxation of biological water, J. Phys. Chem. B 101(50), 10954–10962 (1997).

    Article  CAS  Google Scholar 

  60. W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, A. H. Zewail, Ultrafast solvation dynamics of human serum albumin: Correlations with conformational transitions and site-selected recognition, J. Phys. Chem. B 110(21), 10540–10549 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. S. Guha, K. Sahu, D. Roy, S. K. Mondal, S. Roy, K. Bhattacharyya, Slow solvation dynamics at the active site of an enzyme: Implications for catalysis, Biochemistry 44(25), 8940–8947 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. K. Sahu, S. K. Mondal, S. Ghosh, D. Roy, P. Sen, K. Bhattacharyya, Femtosecond study of partially folded states of cytochrome C by solvation dynamics, J. Phys. Chem. B 110(2) 1056–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. P. Sen, D. Roy, K. Sahu, S. K. Mondal, K. Bhattacharyya, Hydration dynamics of a protein in the presence of urea and sodium dodecyl sulfate, Chem. Phys. Lett. 395(1–2), 58–63 (2004).

    Article  CAS  Google Scholar 

  64. K. Sahu, S. K. Mondal, S. Ghosh, D. Roy, P. Sen, Temperature dependence of solvation dynamics and anisotropy decay in a protein. ANS in bovine serum albumin, J. Chem. Phys. 124(12), 124909-1-7 (2006).

    Google Scholar 

  65. W. H. Qiu, L. Y. Zhang, Y. T. Kao, W. Y. Lu, T. P. Li, J. Kim, G. M. Sollenberger, L. J. Wang, D. P. Zhong, Ultrafast hydration dynamics in melittin folding and aggregation: Helix formation and tetramer self-assembly, J. Phys. Chem. B 109(35), 16901–16910 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. K. Sahu, D. Roy, S. K. Mondal, R. Karmakar, K. Bhattacharyya, Study of protein-surfactant interaction using excited state proton transfer, Chem. Phys. Lett. 404(4–6), 341–345 (2005).

    Article  CAS  Google Scholar 

  67. K. Sahu, S. K. Mondal, D. Roy, R. Karmakar, K. Bhattacharyya, Study of interaction of a cationic protein with a cationic surfactant using solvation dynamics. Lysozyme:CTAB, Chem. Phys. Lett. 413(4–6), 484–489 (2005).

    Article  CAS  Google Scholar 

  68. S. Bandyopadhyay, S. Chakraborty, B. Bagchi, Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer, J. Am. Chem. Soc. 127(47), 16660–16667 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. S. Bandyopadhyay, S. Chakraborty, S. Balasubramanian, B. Bagchi, Sensitivity of polar solvation dynamics to the secondary structures of aqueous proteins and the role of surface exposure of the probe, J. Am. Chem. Soc. 127(11), 4071–4075 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. S. Abel, M. Waks, W. Urbach, M. Marchi, Structure, stability, and hydration of a polypeptide in AOT reverse micelles, J. Am. Chem. Soc. 128(2), 382–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. A. A. Hassanali, T. P. Li, D. P. Zhong, S. J. Singer, A molecular dynamics study of Lys-Trp-Lys: Structure and dynamics in solution following photoexcitation, J. Phys. Chem. B 110(21), 10497–10508 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. U. Heugen, G. Schwaab, E. Brundermann, M. Heyden, X. Yu, D. M. Leitner, M. Havenith, Solute-induced retardation water dynamics probed directly by terahertz spectroscopy, Proc. Natl. Acad. Sci. USA 103(33), 12301–12306 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. C. Caronna, F. Natali, A. Cupane, Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics, Biophys. Chem. 116(3), 219–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. D. Russo, R. K. Murarka, J. R. D. Copley, T. Head-Gordon, Molecular view of water dynamics near model peptides, J. Phys. Chem. B 109(26), 12966–12975 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. D. Russo, G. Hura, T. Head-Gordon, Hydration dynamics near a model protein surface, Biophys. J. 86(3), 1852–1862 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. K. Modig, E. Liepinsh, G. Otting, B. Halle, Dynamics of protein and peptide hydration, J. Am. Chem. Soc. 126(1), 102–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. V. Makrov, B. M. Petit, Solvation and hydration of protein and nucleic acids: A theoretical view of simulation and experiment, Acc. Chem. Res. 35(6), 376–384 (2002).

    Article  Google Scholar 

  78. S. K. Pal, L. Zhao, T. Xia, A. H. Zewail, Site- and sequence-selective ultrafast hydration of DNA, Proc. Natl. Acad. Sci. USA 100(24), 13746–13751 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. D. Andreatta, J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J. Murphy, R. S. Coleman, M. A. Berg, Power-law solvation dynamics in DNA over six decades in time, J. Am. Chem. Soc. 127(20), 7270–7271 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. D. Andreatta, S. Sen, J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J. Murphy, R. S. Coleman, M. A. Berg, Ultrafast dynamics in DNA: "fraying" at the end of the helix, J. Am. Chem. Soc. 128(21), 6885–6892 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. S. Sen, L. A. Gearheart, E. Rivers, H. Liu, R. S. Coleman, C. J. Murphy, M. A Berg, Role of monovalent counterions in the ultrafast dynamics of DNA, J. Phys. Chem. B 110(26), 13248–13255 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. S. Sen, N. A. Paraggio, L. A. Gearheart, E. E. Connor, A. Issa, R. S. Coleman, D. M. Wilson, M. D. Wyatt, M. A. Berg, Effect of protein binding on ultrafast DNA dynamics: Characterization of a DNA: APE1 complex, Biophys. J. 89(6), 4129–4138 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. M. M. Somoza, D. Andreatta, C. J. Murphy, R. S. Coleman, M. A. Berg, Effect of lesions on the dynamics of DNA on the picosecond and nanosecond timescales using a polarity sensitive probe, Nucl. Acids Res. 32(8), 2494–2507 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. S. Pal, P. K. Maiti, B. Bagchi, Anisotropic and sub-diffusive water motion at the surface of DNA and of an anionic micelle CsPFO, J. Phys. Condens. Matter 17(49), S4317–S4331 (2005).

    Article  CAS  Google Scholar 

  85. P. K. Maiti, T. A. Pascal, N. Vaidehi, J. Heo, W. A. Goddard, Atomic-level simulations of Seeman DNA nanostructures: The paranemic crossover in salt solution, Biophys. J. 90(5) 1463–1479 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. D. Mandal, S. K. Pal, A. Datta, K. Bhattacharyya, Photoisomerization of diethyloxa-dicarbocyanine iodide in DNA and proteins, Res. Chem. Intermed. 25(7), 685–693 (1999).

    Article  CAS  Google Scholar 

  87. V. Karunakaran, J. L. F. Lustres, L. J. Zhao, N. P. Ernsting, O. Seitz, Large dynamic stokes shift of DNA intercalation dye thiazole orange has contribution from a high-frequency mode, J. Am. Chem. Soc. 128(9), 2954–2962 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. A. Furstenberg, M. D. Julliard, T. G. Deligeorgiev, N. I. Gadjev, A. A. Vasilev, E. Vauthey, Ultrafast excited-state dynamics of DNA fluorescent intercalators: New insight into the fluorescence enhancement mechanism, J. Am. Chem. Soc. 128(23), 7661–7669 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kankan Bhattacharyya .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mondal, S.K., Sahu, K., Bhattacharyya, K. (2009). Study of Biological Assemblies by Ultrafast Fluorescence Spectroscopy. In: Reviews in Fluorescence 2007. Reviews in Fluorescence, vol 2007. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88722-7_8

Download citation

Publish with us

Policies and ethics