Signaling Pathways Mediating Dendritic Cell Dysfunction in Cancer

  • Jing YangEmail author
  • Qing Yi


Dendritic cells are professional antigen-presenting cells that regulate the immune system. In cancers, they uptake tumor antigens, deliver them to T cells, and induce tumor-specific T-cell responses. However, tumor cells develop mechanisms to evade the immune system, partly by impairing dendritic cell differentiation, function and longevity. Accumulating evidence has indicated that intracellular signaling pathways, such as MAPK, JAK/STAT3, PI3K/Akt, and NF-κB, are critical to the regulation of dendritic cell differentiation, survival, and activity. However, these signaling pathways are found to be hyperactivated in both tumor cells and dendritic cells in malignancies. The constitutive activation of these pathways in cancer cells leads to tumor cell secretion of cytokines that activate intracellular signaling pathways, particularly p38 MAPK, in dendritic cells or their progenitor cells and impair dendritic cell differentiation and function. In this chapter we will discuss signaling pathways that mediate dendritic cell dysfunction. We will focus on the roles of MAPK, particularly p38 MAPK, in negatively regulating dendritic cell differentiation and function in cancers.


Dendritic Cell Dendritic Cell Maturation Immature Dendritic Cell Dendritic Cell Differentiation Myeloid Cell Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by institutional startup funds from the University of Texas M.D. Anderson Cancer Center, grants from the National Cancer Institute (R01 CA96569 and R01 CA103978), Multiple Myeloma Research Foundation, International Myeloma Foundation, and Commonwealth Foundation for Cancer Research. We thank Ms. Alison Woo for providing editorial assistance.


  1. Aboudola, S., Murugesan, G., Szpurka, H., Ramsingh, G., Zhao, X., Prescott, N., Tubbs, R. R., Maciejewski, J. P. and Hsi, E. D. 2007. Bone marrow phospho-STAT5 expression in non-CML chronic myeloproliferative disorders correlates with JAK2 V617F mutation and provides evidence of in vivo JAK2 activation. American Journal of Surgical Pathology 31:233–239.PubMedCrossRefGoogle Scholar
  2. Ade, N., Antonios, D., Kerdine-Romer, S., Boisleve, F., Rousset, F. and Pallardy, M. 2007. NF-kappaB plays a major role in the maturation of human dendritic cells induced by NiSO(4) but not by DNCB. Toxicological Sciences 99:488–501.PubMedCrossRefGoogle Scholar
  3. Aloysius, M. M., Takhar, A., Robins, A. and Eremin, O. 2006. Dendritic cell biology, dysfunction and immunotherapy in gastrointestinal cancers. Surgeon Journal of the Royal Colleges of Surgeons of Edinburgh & Ireland 4:195–210.CrossRefGoogle Scholar
  4. Aplin, A. E., Hogan, B. P., Tomeu, J. and Juliano, R. L. 2002. Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. Journal of Cell Science 115:2781–2790.PubMedGoogle Scholar
  5. Ardeshna, K. M., Pizzey, A. R., Devereux, S. and Khwaja, A. 2000. The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046.PubMedGoogle Scholar
  6. Asosingh, K., Radl, J., Van Riet, I., Van Camp, B. and Vanderkerken, K. 2000. The 5TMM series: a useful in vivo mouse model of human multiple myeloma. Hematol J 1:351–356.PubMedCrossRefGoogle Scholar
  7. Barclay, J. L., Anderson, S. T., Waters, M. J. and Curlewis, J. D. 2007. Characterization of the SOCS3 promoter response to prostaglandin E2 in T47D cells. Molecular Endocrinology 21:2516–2528.PubMedCrossRefGoogle Scholar
  8. Bharadwaj, U., Zhang, R., Yang, H., Li, M., Doan, L. X., Chen, C. and Yao, Q. 2005. Effects of cyclophilin A on myeloblastic cell line KG-1 derived dendritic like cells (DLC) through p38 MAP kinase activation. Journal of Surgical Research 127:29–38.PubMedCrossRefGoogle Scholar
  9. Brown, R. D., Pope, B., Murray, A., Esdale, W., Sze, D. M., Gibson, J., Ho, P. J., Hart, D. and Joshua, D. 2001. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98:2992–2998.PubMedCrossRefGoogle Scholar
  10. Budagian, V., Bulanova, E., Brovko, L., Orinska, Z., Fayad, R., Paus, R. and Bulfone-Paus, S. 2003. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. Journal of Biological Chemistry 278:1549–1560.PubMedCrossRefGoogle Scholar
  11. Campbell, G. S., Yu, C. L., Jove, R. and Carter-Su, C. 1997. Constitutive activation of JAK1 in Src-transformed cells. Journal of Biological Chemistry 272:2591–2594.PubMedCrossRefGoogle Scholar
  12. Canesi, L., Lorusso, L. C., Ciacci, C., Betti, M. and Gallo, G. 2005. Effects of the brominated flame retardant tetrabromobisphenol-A (TBBPA) on cell signaling and function of Mytilus hemocytes: involvement of MAP kinases and protein kinase C. Aquatic Toxicology 75:277–287.PubMedCrossRefGoogle Scholar
  13. Cheng, C. H., Yu, K. C., Chen, H. L., Chen, S. Y., Huang, C. H., Chan, P. C., Wung, C. W. and Chen, H. C. 2004. Blockade of v-Src-stimulated tumor formation by the Src homology 3 domain of Crk-associated substrate (Cas). FEBS Letters 557:221–227.PubMedCrossRefGoogle Scholar
  14. Chou, S. D., Khan, A. N., Magner, W. J. and Tomasi, T. B. 2005. Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. International Immunology 17:1483–1494.PubMedCrossRefGoogle Scholar
  15. Cruz, M. T., Duarte, C. B., Goncalo, M., Carvalho, A. P. and Lopes, M. C. 1999. Involvement of JAK2 and MAPK on type II nitric oxide synthase expression in skin-derived dendritic cells. American Journal of Physiology 277:C1050–C1057.PubMedGoogle Scholar
  16. Demuth, T., Reavie, L. B., Rennert, J. L., Nakada, M., Nakada, S., Hoelzinger, D. B., Beaudry, C. E., Henrichs, A. N., Anderson, E. M. and Berens, M. E. 2007. MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Molecular Cancer Therapeutics 6:1212–1222.PubMedCrossRefGoogle Scholar
  17. Di Nicola, M. and Lemoli, R. M. 2000. Dendritic cells: specialized antigen presenting cells. Haematologica 85:202–207.PubMedGoogle Scholar
  18. Do, Y., Hegde, V. L., Nagarkatti, P. S. and Nagarkatti, M. 2004. Bryostatin-1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Research 64:6756–6765.PubMedCrossRefGoogle Scholar
  19. Evel-Kabler, K. and Chen, S. Y. 2006. Dendritic cell-based tumor vaccines and antigen presentation attenuators. Molecular Therapy: The Journal of the American Society of Gene Therapy 13:850–858.Google Scholar
  20. Faderl, S., Ferrajoli, A., Harris, D., Van, Q., Kantarjian, H. M. and Estrov, Z. 2007. Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia (AML) cells. Leukemia Research 31:91–95.PubMedCrossRefGoogle Scholar
  21. Gabrilovich, D. I. 2002. Dendritic cell vaccines for cancer treatment. Current Opinion in Molecular Therapeutics 4:452–458.PubMedGoogle Scholar
  22. Gabrilovich, D. I., Nadaf, S., Corak, J., Berzofsky, J. A. and Carbone, D. P. 1996. Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cellular Immunology 170:111–119.PubMedCrossRefGoogle Scholar
  23. Geginat, J., Sallusto, F. and Lanzavecchia, A. 2003. Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. Pathologie Biologie 51:64–66.PubMedCrossRefGoogle Scholar
  24. Ichijo, H. 1999. From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093.PubMedCrossRefGoogle Scholar
  25. Jarnicki, A. G., Conroy, H., Brereton, C., Donnelly, G., Toomey, D., Walsh, K., Sweeney, C., Leavy, O., Fletcher, J., Lavelle, E. C., Dunne, P. and Mills, K. H. 2008. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. Journal of immunology (Baltimore, MD: 1950) 180:3797–3806.Google Scholar
  26. Jiang, J. L., Wang, S., Li, N. S., Zhang, X. H., Deng, H. W. and Li, Y. J. 2007. The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells. Biochemistry & Cell Biology 85:66–77.CrossRefGoogle Scholar
  27. Jing, N., Zhu, Q., Yuan, P., Li, Y., Mao, L. and Tweardy, D. J. 2006. Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Molecular Cancer Therapeutics 5:279–286.PubMedCrossRefGoogle Scholar
  28. Jost, E., do, O. N., Dahl, E., Maintz, C. E., Jousten, P., Habets, L., Wilop, S., Herman, J. G., Osieka, R. and Galm, O. 2007. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 21:505–510.PubMedCrossRefGoogle Scholar
  29. Kandilci, A. and Grosveld, G. C. 2005. SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells. Leukemia 19:1439–1445.PubMedCrossRefGoogle Scholar
  30. Kang, H. K., Lee, H. Y., Lee, Y. N., Jo, E. J., Kim, J. I., Aosai, F., Yano, A., Kwak, J. Y. and Bae, Y. S. 2004. Toxoplasma gondii-derived heat shock protein 70 stimulates the maturation of human monocyte-derived dendritic cells. Biochemical & Biophysical Research Communications 322:899–904.CrossRefGoogle Scholar
  31. Kawakami, Y., Rodriguez-Leon, J., Koth, C. M., Buscher, D., Itoh, T., Raya, A., Ng, J. K., Esteban, C. R., Takahashi, S., Henrique, D., Schwarz, M. F., Asahara, H. and Izpisua Belmonte, J. C. 2003. MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb.[see comment]. Nature Cell Biology 5:513–519.PubMedCrossRefGoogle Scholar
  32. Kim, C. J., Dessureault, S., Gabrilovich, D., Reintgen, D. S. and Slingluff, C. L., Jr. 2002. Immunotherapy for melanoma. Cancer Control 9:22–30.PubMedGoogle Scholar
  33. Kim, G. Y., Kim, K. H., Lee, S. H., Yoon, M. S., Lee, H. J., Moon, D. O., Lee, C. M., Ahn, S. C., Park, Y. C. and Park, Y. M. 2005. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. Journal of Immunology 174:8116–8124.Google Scholar
  34. Kim, R., Emi, M. and Tanabe, K. 2006. Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology 119:254–264.PubMedCrossRefGoogle Scholar
  35. Kirkwood, K. L., Li, F., Rogers, J. E., Otremba, J., Coatney, D. D., Kreider, J. M., D'Silva, N. J., Chakravarty, S., Dugar, S., Higgins, L. S., Protter, A. A. and Medicherla, S. 2007. A p38alpha selective mitogen-activated protein kinase inhibitor prevents periodontal bone loss. Journal of Pharmacology & Experimental Therapeutics 320:56–63.CrossRefGoogle Scholar
  36. Kortylewski, M., Jove, R. and Yu, H. 2005. Targeting STAT3 affects melanoma on multiple fronts. Cancer & Metastasis Reviews 24:315–327.CrossRefGoogle Scholar
  37. Kusmartsev, S. and Gabrilovich, D. I. 2002. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunology, Immunotherapy 51:293–298.PubMedCrossRefGoogle Scholar
  38. Kusmartsev, S. and Gabrilovich, D. I. 2006. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer & Metastasis Reviews 25:323–331.CrossRefGoogle Scholar
  39. Larmonier, N., Merino, D., Nicolas, A., Cathelin, D., Besson, A., Bateman, A., Solary, E., Martin, F., Katsanis, E. and Bonnotte, B. 2006. Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading. Apoptosis 11:1513–1524.PubMedCrossRefGoogle Scholar
  40. Lee, H. J., Cho, J. W., Kim, S. C., Kang, K. H., Lee, S. K., Pi, S. H. and Kim, E. C. 2006. Roles of p38 and ERK MAP kinases in IL-8 expression in TNF-alpha- and dexamethasone-stimulated human periodontal ligament cells. Cytokine 35:67–76.PubMedCrossRefGoogle Scholar
  41. Li, J., Yu, B., Song, L., Eschrich, S. and Haura, E. B. 2007. Effects of IFN-gamma and Stat1 on gene expression, growth, and survival in non-small cell lung cancer cells. Journal of Interferon & Cytokine Research 27:209–220.CrossRefGoogle Scholar
  42. Mata, R., Subira, D., Garcia-Raso, A. and Llamas, P. 2007. JAK2 as a molecular marker in myeloproliferative diseases. Cardiovascular & Hematological Agents in Medicinal Chemistry 5:198–203.CrossRefGoogle Scholar
  43. Matos, T. J., Duarte, C. B., Goncalo, M. and Lopes, M. C. 2005a. DNFB activates MAPKs and upregulates CD40 in skin-derived dendritic cells. Journal of Dermatological Science 39:113–123.PubMedCrossRefGoogle Scholar
  44. Matos, T. J., Duarte, C. B., Goncalo, M. and Lopes, M. C. 2005b. Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunology & Cell Biology 83:607–614.CrossRefGoogle Scholar
  45. McKay, D. M., Botelho, F., Ceponis, P. J. and Richards, C. D. 2000. Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. American Journal of Physiology – Gastrointestinal & Liver Physiology 279:G1094–G1103.Google Scholar
  46. Nakahara, T., Uchi, H., Urabe, K., Chen, Q., Furue, M. and Moroi, Y. 2004. Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. International Immunology 16:1701–1709.PubMedCrossRefGoogle Scholar
  47. Nakamura, K., Zhou, C. J., Parente, J. and Chew, C. S. 1996. Parietal cell MAP kinases: multiple activation pathways. American Journal of Physiology 271:G640-G649.PubMedGoogle Scholar
  48. Nefedova, Y., Cheng, P., Gilkes, D., Blaskovich, M., Beg, A. A., Sebti, S. M. and Gabrilovich, D. I. 2005a. Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. Journal of Immunology 175:4338–4346.Google Scholar
  49. Nefedova, Y. and Gabrilovich, D. I. 2007. Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Current Cancer Drug Targets 7:71–77.PubMedCrossRefGoogle Scholar
  50. Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., Jove, R. and Gabrilovich, D. 2004. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. Journal of Immunology 172:464–474.Google Scholar
  51. Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M. and Gabrilovich, D. I. 2005b. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Research 65:9525–9535.PubMedCrossRefGoogle Scholar
  52. Osawa, Y., Iho, S., Takauji, R., Takatsuka, H., Yamamoto, S., Takahashi, T., Horiguchi, S., Urasaki, Y., Matsuki, T. and Fujieda, S. 2006. Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. Journal of Immunology 177:4841–4852.Google Scholar
  53. Park, S., Kim, D., Kaneko, S., Szewczyk, K. M., Nicosia, S. V., Yu, H., Jove, R. and Cheng, J. Q. 2005. Molecular cloning and characterization of the human AKT1 promoter uncovers its up-regulation by the Src/Stat3 pathway. Journal of Biological Chemistry 280:38932–38941.PubMedCrossRefGoogle Scholar
  54. Park, S. M., Kim, H. S., Choe, J. and Lee, T. H. 1999. Differential induction of cytokine genes and activation of mitogen-activated protein kinase family by soluble CD40 ligand and TNF in a human follicular dendritic cell line. Journal of Immunology 163:631–638.Google Scholar
  55. Philpott, N. J., Nociari, M., Elkon, K. B. and Falck-Pedersen, E. 2004. Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proceedings of the National Academy of Sciences of the United States of America 101:6200–6205.PubMedCrossRefGoogle Scholar
  56. Rabinovich, G. A., Gabrilovich, D. and Sotomayor, E. M. 2007. Immunosuppressive strategies that are mediated by tumor cells. Annual Review of Immunology 25:267–296.PubMedCrossRefGoogle Scholar
  57. Radl, J., Croese, J. W., Zurcher, C., Van den Enden-Vieveen, M. H. and de Leeuw, A. M. 1988. Animal model of human disease. Multiple myeloma. Am J Pathol 132:593–597.Google Scholar
  58. Randolph, G. J., Sanchez-Schmitz, G. and Angeli, V. 2005. Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Seminars in Immunopathology 26:273–287.PubMedCrossRefGoogle Scholar
  59. Ratta, M., Fagnoni, F., Curti, A., Vescovini, R., Sansoni, P., Oliviero, B., Fogli, M., Ferri, E., Della Cuna, G. R., Tura, S., Baccarani, M. and Lemoli, R. M. 2002. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237.PubMedCrossRefGoogle Scholar
  60. Saito, Y., Yanagawa, Y., Kikuchi, K., Iijima, N., Iwabuchi, K. and Onoe, K. 2006. Low-dose lipopolysaccharide modifies the production of IL-12 by dendritic cells in response to various cytokines. Journal of Clinical & Experimental Hematopathology 46:31–36.CrossRefGoogle Scholar
  61. Santini, S. M. and Belardelli, F. 2003. Advances in the use of dendritic cells and new adjuvants for the development of therapeutic vaccines. Stem Cells 21:495–505.PubMedCrossRefGoogle Scholar
  62. Sheng, K. C., Pietersz, G. A., Wright, M. D. and Apostolopoulos, V. 2005. Dendritic cells: activation and maturation--applications for cancer immunotherapy. Current Medicinal Chemistry 12:1783–1800.PubMedCrossRefGoogle Scholar
  63. Sigaud, S., Evelson, P. and Gonzalez-Flecha, B. 2005. H2O2-induced proliferation of primary alveolar epithelial cells is mediated by MAP kinases. Antioxidants & Redox Signaling 7:6–13.CrossRefGoogle Scholar
  64. Sinkovics, J. G. and Horvath, J. C. 2000. Vaccination against human cancers (review). International Journal of Oncology 16:81–96.PubMedGoogle Scholar
  65. Sumimoto, H., Imabayashi, F., Iwata, T. and Kawakami, Y. 2006. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine 203:1651–1656.PubMedCrossRefGoogle Scholar
  66. Sumimoto, H., Miyagishi, M., Miyoshi, H., Yamagata, S., Shimizu, A., Taira, K. and Kawakami, Y. 2004. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–6039.PubMedCrossRefGoogle Scholar
  67. Taki, T. and Taniwaki, M. 2006. Chromosomal translocations in cancer and their relevance for therapy. Current Opinion in Oncology 18:62–68.PubMedCrossRefGoogle Scholar
  68. Tanami, H., Imoto, I., Hirasawa, A., Yuki, Y., Sonoda, I., Inoue, J., Yasui, K., Misawa-Furihata, A., Kawakami, Y. and Inazawa, J. 2004. Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene 23:8796–8804.PubMedCrossRefGoogle Scholar
  69. Tassiulas, I., Park-Min, K. H., Hu, Y., Kellerman, L., Mevorach, D. and Ivashkiv, L. B. 2007. Apoptotic cells inhibit LPS-induced cytokine and chemokine production and IFN responses in macrophages. Human Immunology 68:156–164.PubMedCrossRefGoogle Scholar
  70. Wang, S., Hong, S., Yang, J., Qian, J., Zhang, X., Shpall, E., Kwak, L. W. and Yi, Q. 2006a. Optimizing immunotherapy in multiple myeloma: Restoring the function of patients' monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 108:4071–4077.PubMedCrossRefGoogle Scholar
  71. Wang, S., Yang, J., Qian, J., Wezeman, M., Kwak, L. W. and Yi, Q. 2006b. Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107:2432–2439.PubMedCrossRefGoogle Scholar
  72. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D. and Yu, H. 2004. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells.[erratum appears in Nat Med. 2004 Feb;10(2):209]. Nature Medicine 10:48–54.PubMedCrossRefGoogle Scholar
  73. West, M. A., Wallin, R. P., Matthews, S. P., Svensson, H. G., Zaru, R., Ljunggren, H. G., Prescott, A. R. and Watts, C. 2004. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157.PubMedCrossRefGoogle Scholar
  74. Xie, J., Qian, J., Wang, S., Freeman, M. E., 3rd, Epstein, J. and Yi, Q. 2003. Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol 171:4792–4800.PubMedGoogle Scholar
  75. Xie, J., Qian, J., Yang, J., Wang, S., Freeman, M. E., 3rd and Yi, Q. 2005. Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Experimental Hematology 33:564–572.PubMedCrossRefGoogle Scholar
  76. Yang, L., Ng, K. Y. and Lillehei, K. O. 2003. Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma. Cancer Control 10:138–147.PubMedGoogle Scholar
  77. Yoshikawa, H., Matsubara, K., Qian, G. S., Jackson, P., Groopman, J. D., Manning, J. E., Harris, C. C. and Herman, J. G. 2001. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity [see comment]. Nature Genetics 28:29–35.PubMedGoogle Scholar
  78. Yu, C. L., Jove, R. and Burakoff, S. J. 1997. Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase. Journal of Immunology 159:5206–5210.Google Scholar
  79. Yu, C. L., Meyer, D. J., Campbell, G. S., Larner, A. C., Carter-Su, C., Schwartz, J. and Jove, R. 1995. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269:81–83.PubMedCrossRefGoogle Scholar
  80. Zaru, R., Ronkina, N., Gaestel, M., Arthur, J. S. and Watts, C. 2007. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunology 8:1227–1235.PubMedCrossRefGoogle Scholar
  81. Zou, G. M. and Hu, W. Y. 2005. LIGHT regulates CD86 expression on dendritic cells through NF-kappaB, but not JNK/AP-1 signal transduction pathway. Journal of Cellular Physiology 205:437–443.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Lymphoma and MyelomaM. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations