Stress, Immunity and Dendritic Cells in Cancer

  • Rachel Kohman
  • Alexander W. KusnecovEmail author


The literature on stress and immunity clearly demonstrates that stress exposure modifies certain aspects of immune function. While stressful experiences and stress-associated molecules have well-documented effects on the activity of lymphocytes, stress exposure may disrupt processes that occur earlier in the immune response. Stress-induced alterations in immune function may, in part, result from changes in the development and/or function of cells involved in the initiation of the response, namely dendritic cells. Although the literature is relatively limited, the findings suggest that stress-associated hormones and neuropeptides can modulate maturation and migration of dendritic cells. The present chapter concentrates on stress-related alterations in dendritic cell function and the potential relevance of psychological factors to the progression of cancer and to the effectiveness of therapeutic treatments.


Dendritic Cell Stressor Exposure Allostatic Load Immature Dendritic Cell Antigen Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support contributed by grants MH60706, NIEHS P30 ES05022 and NIEHS Graduate Training grant 5T32 E507148.


  1. Bachen, E. A., Manuck, S. B., Marsland, A. L., Cohen, S., Malkoff, S. B., Muldoon, M. F. and Rabin, B. S. 1992. Lymphocyte subset and cellular immune responses to a brief experimental stressor. Psychosom Med 54:673–679.PubMedGoogle Scholar
  2. Ben-Eliyahu, S. 2003. The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology. Brain Behav Immun 17 Suppl 1:S27–36.PubMedCrossRefGoogle Scholar
  3. Ben-Eliyahu, S., Page, G. G. and Schleifer, S. J. 2007. Stress, NK cells, and cancer: still a promissory note. Brain Behav Immun 21:881–887.PubMedCrossRefGoogle Scholar
  4. Blatteis, C. M. 2007. The onset of fever: new insights into its mechanism. Prog Brain Res 162:3–14.CrossRefGoogle Scholar
  5. Bovbjerg, D. H. 2006. The continuing problem of post chemotherapy nausea and vomiting: contributions of classical conditioning. Auton Neurosci 129:92–98.PubMedCrossRefGoogle Scholar
  6. Bovbjerg, D. H., Redd, W. H., Jacobsen, P. B., Manne, S. L., Taylor, K. L., Surbone, A., Crown, J. P., Norton, L., Gilewski, T. A., Hudis, C. A. and et al. 1992. An experimental analysis of classically conditioned nausea during cancer chemotherapy. Psychosom Med 54:623–637.PubMedGoogle Scholar
  7. Bovbjerg, D. H., Redd, W. H., Maier, L. A., Holland, J. C., Lesko, L. M., Niedzwiecki, D., Rubin, S. C. and Hakes, T. B. 1990. Anticipatory immune suppression and nausea in women receiving cyclic chemotherapy for ovarian cancer. J Consult Clin Psychol 58:153–157.PubMedCrossRefGoogle Scholar
  8. Chida, Y., Hamer, M., Wardle, J. and Steptoe, A. 2008. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 5:466–475.PubMedCrossRefGoogle Scholar
  9. Cohen, S. 2005. Keynote presentation at the eight international congress of behavioral medicine: the Pittsburgh common cold studies: psychosocial predictors of susceptibility to respiratory infectious illness. Int J Behav Med 12:123–131.PubMedCrossRefGoogle Scholar
  10. Coussons-Read, M. E., Maslonek, K. A., Fecho, K., Perez, L. and Lysle, D. T. 1994. Evidence for the involvement of macrophage-derived nitric oxide in the modulation of immune status by a conditioned aversive stimulus. J Neuroimmunol 50:51–58.PubMedCrossRefGoogle Scholar
  11. Cunnick, J. E., Lysle, D. T., Armfield, A. and Rabin, B. S. 1988. Shock-induced modulation of lymphocyte responsiveness and natural killer activity: differential mechanisms of induction. Brain Behav Immun 2:102–113.PubMedCrossRefGoogle Scholar
  12. Cunnick, J. E., Lysle, D. T., Kucinski, B. J. and Rabin, B. S. 1990. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors. Pharmacol Biochem Behav 36:645–651.PubMedCrossRefGoogle Scholar
  13. Damjanovic, A. K., Yang, Y., Glaser, R., Kiecolt-Glaser, J. K., Nguyen, H., Laskowski, B., Zou, Y., Beversdorf, D. Q. and Weng, N. P. 2007. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients. J Immunol 179:4249–4254.PubMedGoogle Scholar
  14. Delgado, M., Gonzalez-Rey, E. and Ganea, D. 2005. The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 175:7311–7324.PubMedGoogle Scholar
  15. Deng, Y., Chan, S. S. and Chang, S. 2008. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458.PubMedCrossRefGoogle Scholar
  16. Dhabhar, F. S. and McEwen, B. S. 1996. Stress-induced enhancement of antigen-specific cell-mediated immunity. J Immunol 156:2608–2615.PubMedGoogle Scholar
  17. Dhabhar, F. S., Satoskar, A. R., Bluethmann, H., David, J. R. and McEwen, B. S. 2000. Stress-induced enhancement of skin immune function: a role for gamma interferon. Proc Natl Acad Sci U S A 97:2846–2851.CrossRefGoogle Scholar
  18. Dimsdale, J. E. 2008. Psychological stress and cardiovascular disease. J Am Coll Cardiol 51:1237–1246.PubMedCrossRefGoogle Scholar
  19. Dobbs, C. M., Feng, N., Beck, F. M. and Sheridan, J. F. 1996. Neuroendocrine regulation of cytokine production during experimental influenza viral infection: effects of restraint stress-induced elevation in endogenous corticosterone. J Immunol 157:1870–1877.PubMedGoogle Scholar
  20. Elenkov, I. J. and Chrousos, G. P. 1999. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 10:359–368.PubMedCrossRefGoogle Scholar
  21. Elftman, M. D., Norbury, C. C., Bonneau, R. H. and Truckenmiller, M. E. 2007. Corticosterone impairs dendritic cell maturation and function. Immunology 122:279–290.PubMedCrossRefGoogle Scholar
  22. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D. and Cawthon, R. M. 2004. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101:17312–17315.PubMedCrossRefGoogle Scholar
  23. Esche, C., Makarenkova, V. P., Kost, N. V., Lotze, M. T., Zozulya, A. A. and Shurin, M. R. 1999. Murine dendritic cells express functional delta-type opioid receptors. Ann N Y Acad Sci 885:387–390.PubMedCrossRefGoogle Scholar
  24. Flaherty, C. F., Rowan, G. A. and Pohorecky, L. A. 1986. Corticosterone, novelty-induced hyperglycemia, and chlordiazepoxide. Physiol Behav 37:393–396.PubMedCrossRefGoogle Scholar
  25. Fleshner, M., Bellgrau, D., Watkins, L. R., Laudenslager, M. L. and Maier, S. F. 1995. Stress-induced reduction in the rat mixed lymphocyte reaction is due to macrophages and not to changes in T cell phenotypes. J Neuroimmunol 56:45–52.PubMedCrossRefGoogle Scholar
  26. Flint, M. S. and Tinkle, S. S. 2001. C57BL/6 mice are resistant to acute restraint modulation of cutaneous hypersensitivity. Toxicol Sci 62:250–256.PubMedCrossRefGoogle Scholar
  27. Flint, M. S., Valosen, J. M., Johnson, E. A., Miller, D. B. and Tinkle, S. S. 2001. Restraint stress applied prior to chemical sensitization modulates the development of allergic contact dermatitis differently than restraint prior to challenge. J Neuroimmunol 113:72–80.PubMedCrossRefGoogle Scholar
  28. Gidron, Y. and Ronson, A. 2008. Psychosocial factors, biological mediators, and cancer prognosis: a new look at an old story. Curr Opin Oncol 20:386–392.PubMedCrossRefGoogle Scholar
  29. Glaser, R. and Kiecolt-Glaser, J. K. 2005. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251.PubMedCrossRefGoogle Scholar
  30. Golden, S. H. 2007. A review of the evidence for a neuroendocrine link between stress, depression and diabetes mellitus. Curr Diabetes Rev 3:252–259.PubMedCrossRefGoogle Scholar
  31. Goldstein, D. S. and Kopin, I. J. 2007. Evolution of concepts of stress. Stress 10:109–120.PubMedCrossRefGoogle Scholar
  32. Gonzalez-Rey, E., Chorny, A., Fernandez-Martin, A., Ganea, D. and Delgado, M. 2006. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 107:3632–3638.PubMedCrossRefGoogle Scholar
  33. Hager, P., Hagman, B., Wikstrom, A. C. and Strommer, L. 2004. CRF-receptor 1 blockade attenuates acute posttraumatic hyperglycemia in rats. J Surg Res 119:72–79.PubMedCrossRefGoogle Scholar
  34. Herbert, T. B., Cohen, S., Marsland, A. L., Bachen, E. A., Rabin, B. S., Muldoon, M. F. and Manuck, S. B. 1994. Cardiovascular reactivity and the course of immune response to an acute psychological stressor. Psychosom Med 56:337–344.PubMedGoogle Scholar
  35. Ho, C. S., Lopez, J. A., Vuckovic, S., Pyke, C. M., Hockey, R. L. and Hart, D. N. 2001. Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts. Blood 98:140–145.PubMedCrossRefGoogle Scholar
  36. Kawaguchi, Y., Okada, T., Konishi, H., Fujino, M., Asai, J. and Ito, M. 1997. Reduction of the DTH response is related to morphological changes of Langerhans cells in mice exposed to acute immobilization stress. Clin Exp Immunol 109:397–401.PubMedCrossRefGoogle Scholar
  37. Kerr, L. R., Andrews, H. N., Strange, K. S., Emerman, J. T. and Weinberg, J. 2006. Temporal factors alter effects of social housing conditions on responses to chemotherapy and hormone levels in a Shionogi mammary tumor model. Psychosom Med 68:966–975.PubMedCrossRefGoogle Scholar
  38. Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B. and Sheridan, J. 1996. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc Natl Acad Sci U S A 93:3043–3047.PubMedCrossRefGoogle Scholar
  39. Kleyn, C. E., Schneider, L., Saraceno, R., Mantovani, C., Richards, H. L., Fortune, D. G., Cumberbatch, M., Dearman, R. J., Terenghi, G., Kimber, I. and Griffiths, C. E. 2008. The effects of acute social stress on epidermal Langerhans' cell frequency and expression of cutaneous neuropeptides. J Invest Dermatol 128:1273–1279.PubMedCrossRefGoogle Scholar
  40. Kohm, A. P. and Sanders, V. M. 2000. Norepinephrine: a messenger from the brain to the immune system. Immunol Today 21:539–542.PubMedCrossRefGoogle Scholar
  41. Kop, W. J. 1999. Chronic and acute psychological risk factors for clinical manifestations of coronary artery disease. Psychosom Med 61:476–487.PubMedGoogle Scholar
  42. Korte, S. M., Koolhaas, J. M., Wingfield, J. C. and McEwen, B. S. 2005. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev 29:3–38.PubMedCrossRefGoogle Scholar
  43. Kusnecov, A. W. and Rabin, B. S. 1993. Inescapable footshock exposure differentially alters antigen- and mitogen-stimulated spleen cell proliferation in rats. J Neuroimmunol 44:33–42.PubMedCrossRefGoogle Scholar
  44. Kusnecov, A. W. and Rabin, B. S. 1994. Stressor-induced alterations of immune function: mechanisms and issues. Int Arch Allergy Immunol 105:107–121.PubMedCrossRefGoogle Scholar
  45. Le Moal, M. 2007. Historical approach and evolution of the stress concept: a personal account. Psychoneuroendocrinology 32 Suppl 1:S3–9.PubMedCrossRefGoogle Scholar
  46. Lysle, D. T., Cunnick, J. E. and Rabin, B. S. 1990. Stressor-induced alteration of lymphocyte proliferation in mice: evidence for enhancement of mitogenic responsiveness. Brain Behav Immun 4:269–277.PubMedCrossRefGoogle Scholar
  47. Lysle, D. T., Lyte, M., Fowler, H. and Rabin, B. S. 1987. Shock-induced modulation of lymphocyte reactivity: suppression, habituation, and recovery. Life Sci 41:1805–1814.PubMedCrossRefGoogle Scholar
  48. Maestroni, G. J. 2000. Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J Immunol 165:6743–6747.PubMedGoogle Scholar
  49. Maestroni, G. J. and Mazzola, P. 2003. Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J Neuroimmunol 144:91–99.PubMedCrossRefGoogle Scholar
  50. Makarenkova, V. P., Esche, C., Kost, N. V., Shurin, G. V., Rabin, B. S., Zozulya, A. A. and Shurin, M. R. 2001. Identification of delta- and mu-type opioid receptors on human and murine dendritic cells. J Neuroimmunol 117:68–77.PubMedCrossRefGoogle Scholar
  51. Manni, M. and Maestroni, G. J. 2008. Sympathetic nervous modulation of the skin innate and adaptive immune response to peptidoglycan but not lipopolysaccharide: involvement of beta-adrenoceptors and relevance in inflammatory diseases. Brain Behav Immun 22:80–88.PubMedCrossRefGoogle Scholar
  52. Marsland, A. L., Cohen, S., Rabin, B. S. and Manuck, S. B. 2001. Associations between stress, trait negative affect, acute immune reactivity, and antibody response to hepatitis B injection in healthy young adults. Health Psychol 20:4–11.PubMedCrossRefGoogle Scholar
  53. Marsland, A. L., Cohen, S., Rabin, B. S. and Manuck, S. B. 2006. Trait positive affect and antibody response to hepatitis B vaccination. Brain Behav Immun 20:261–269.PubMedCrossRefGoogle Scholar
  54. Marsland, A. L., Manuck, S. B., Fazzari, T. V., Stewart, C. J. and Rabin, B. S. 1995. Stability of individual differences in cellular immune responses to acute psychological stress. Psychosom Med 57:295–298.PubMedGoogle Scholar
  55. McEwen, B. S. 1998. Protective and damaging effects of stress mediators. N Engl J Med 338:171–179.PubMedCrossRefGoogle Scholar
  56. McEwen, B. S. 2003. Interacting mediators of allostasis and allostatic load: towards an understanding of resilience in aging. Metabolism 52:10–16.PubMedCrossRefGoogle Scholar
  57. Miller, A. H., Ancoli-Israel, S., Bower, J. E., Capuron, L. and Irwin, M. R. 2008. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol 26:971–982.PubMedCrossRefGoogle Scholar
  58. Miller, G. E., Cohen, S., Pressman, S., Barkin, A., Rabin, B. S. and Treanor, J. J. 2004. Psychological stress and antibody response to influenza vaccination: when is the critical period for stress, and how does it get inside the body? Psychosom Med 66:215–223.PubMedCrossRefGoogle Scholar
  59. Morrow, G. R. and Rosenthal, S. N. 1996. Models, mechanisms and management of anticipatory nausea and emesis. Oncology 53 Suppl 1:4–7.PubMedCrossRefGoogle Scholar
  60. Moynihan, J. A. and Ader, R. 1996. Psychoneuroimmunology: animal models of disease. Psychosom Med 58:546–558.PubMedGoogle Scholar
  61. Murray, S. E., Rosenzweig, H. L., Johnson, M., Huising, M. O., Sawicki, K. and Stenzel-Poore, M. P. 2004. Overproduction of corticotropin-releasing hormone blocks germinal center formation: role of corticosterone and impaired follicular dendritic cell networks. J Neuroimmunol 156:31–41.PubMedCrossRefGoogle Scholar
  62. Nance, D. M. and Sanders, V. M. 2007. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21:736–745.PubMedCrossRefGoogle Scholar
  63. Novack, D. H., Cameron, O., Epel, E., Ader, R., Waldstein, S. R., Levenstein, S., Antoni, M. H. and Wainer, A. R. 2007. Psychosomatic medicine: the scientific foundation of the biopsychosocial model. Acad Psychiatry 31:388–401.PubMedCrossRefGoogle Scholar
  64. Pan, J., Ju, D., Wang, Q., Zhang, M., Xia, D., Zhang, L., Yu, H. and Cao, X. 2001. Dexamethasone inhibits the antigen presentation of dendritic cells in MHC class II pathway. Immunol Lett 76:153–161.PubMedCrossRefGoogle Scholar
  65. Piemonti, L., Monti, P., Allavena, P., Leone, B. E., Caputo, A. and Di Carlo, V. 1999a. Glucocorticoids increase the endocytic activity of human dendritic cells. Int Immunol 11:1519–1526.PubMedCrossRefGoogle Scholar
  66. Piemonti, L., Monti, P., Allavena, P., Sironi, M., Soldini, L., Leone, B. E., Socci, C. and Di Carlo, V. 1999b. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 162:6473–6481.PubMedGoogle Scholar
  67. Pressman, S. D., Cohen, S., Miller, G. E., Barkin, A., Rabin, B. S. and Treanor, J. J. 2005. Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health Psychol 24:297–306.PubMedCrossRefGoogle Scholar
  68. Roth, J., Rummel, C., Barth, S. W., Gerstberger, R. and Hubschle, T. 2006. Molecular aspects of fever and hyperthermia. Neurol Clin 24:421–439, v.PubMedCrossRefGoogle Scholar
  69. Sabbioni, M. E., Bovbjerg, D. H., Mathew, S., Sikes, C., Lasley, B. and Stokes, P. E. 1997. Classically conditioned changes in plasma cortisol levels induced by dexamethasone in healthy men. Faseb J 11:1291–1296.PubMedGoogle Scholar
  70. Saint-Mezard, P., Chavagnac, C., Bosset, S., Ionescu, M., Peyron, E., Kaiserlian, D., Nicolas, J. F. and Berard, F. 2003. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. J Immunol 171:4073–4080.PubMedGoogle Scholar
  71. Sanders, V. M. and Straub, R. H. 2002. Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav Immun 16:290–332.PubMedCrossRefGoogle Scholar
  72. Saul, A. N., Oberyszyn, T. M., Daugherty, C., Kusewitt, D., Jones, S., Jewell, S., Malarkey, W. B., Lehman, A., Lemeshow, S. and Dhabhar, F. S. 2005. Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst 97:1760–1767.PubMedCrossRefGoogle Scholar
  73. Segerstrom, S. C. and Miller, G. E. 2004. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 130:601–630.PubMedCrossRefGoogle Scholar
  74. Seiffert, K. and Granstein, R. D. 2006. Neuroendocrine regulation of skin dendritic cells. Ann N Y Acad Sci 1088:195–206.PubMedCrossRefGoogle Scholar
  75. Seiffert, K., Hosoi, J., Torii, H., Ozawa, H., Ding, W., Campton, K., Wagner, J. A. and Granstein, R. D. 2002. Catecholamines inhibit the antigen-presenting capability of epidermal Langerhans cells. J Immunol 168:6128–6135.PubMedGoogle Scholar
  76. Sgoutas-Emch, S. A., Cacioppo, J. T., Uchino, B. N., Malarkey, W., Pearl, D., Kiecolt-Glaser, J. K. and Glaser, R. 1994. The effects of an acute psychological stressor on cardiovascular, endocrine, and cellular immune response: a prospective study of individuals high and low in heart rate reactivity. Psychophysiology 31:264–271.PubMedCrossRefGoogle Scholar
  77. Shanks, N. and Kusnecov, A. W. 1998. Differential immune reactivity to stress in BALB/cByJ and C57BL/6 J mice: in vivo dependence on macrophages. Physiol Behav 65:95–103.PubMedCrossRefGoogle Scholar
  78. Shanks, N., Kusnecov, A., Pezzone, M., Berkun, J. and Rabin, B. S. 1997. Lactation alters the effects of conditioned stress on immune function. Am J Physiol 272:R16–25.PubMedGoogle Scholar
  79. Shawi, M. and Autexier, C. 2008. Telomerase, senescence and ageing. Mech Ageing Dev 129:3–10.CrossRefGoogle Scholar
  80. Spiegel, D. 1997. Psychosocial aspects of breast cancer treatment. Semin Oncol 24:S1-36–S31-47.Google Scholar
  81. Spiegel, D. and Sephton, S. E. 2001. Psychoneuroimmune and endocrine pathways in cancer: effects of stress and support. Semin Clin Neuropsychiatry 6:252–265.PubMedCrossRefGoogle Scholar
  82. Thaker, P. H., Han, L. Y., Kamat, A. A., Arevalo, J. M., Takahashi, R., Lu, C., Jennings, N. B., Armaiz-Pena, G., Bankson, J. A., Ravoori, M., Merritt, W. M., Lin, Y. G., Mangala, L. S., Kim, T. J., Coleman, R. L., Landen, C. N., Li, Y., Felix, E., Sanguino, A. M., Newman, R. A., Lloyd, M., Gershenson, D. M., Kundra, V., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W. and Sood, A. K. 2006. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944.PubMedCrossRefGoogle Scholar
  83. Thaker, P. H., Lutgendorf, S. K. and Sood, A. K. 2007. The neuroendocrine impact of chronic stress on cancer. Cell Cycle 6:430–433.PubMedCrossRefGoogle Scholar
  84. Torres, S. J. and Nowson, C. A. 2007. Relationship between stress, eating behavior, and obesity. Nutrition 23:887–894.PubMedCrossRefGoogle Scholar
  85. Truckenmiller, M. E., Bonneau, R. H. and Norbury, C. C. 2006. Stress presents a problem for dendritic cells: corticosterone and the fate of MHC class I antigen processing and presentation. Brain Behav Immun 20:210–218.PubMedCrossRefGoogle Scholar
  86. Truckenmiller, M. E., Princiotta, M. F., Norbury, C. C. and Bonneau, R. H. 2005. Corticosterone impairs MHC class I antigen presentation by dendritic cells via reduction of peptide generation. J Neuroimmunol 160:48–60.PubMedCrossRefGoogle Scholar
  87. Tseng, R. J., Padgett, D. A., Dhabhar, F. S., Engler, H. and Sheridan, J. F. 2005. Stress-induced modulation of NK activity during influenza viral infection: role of glucocorticoids and opioids. Brain Behav Immun 19:153–164.PubMedCrossRefGoogle Scholar
  88. van Baarle, D., Tsegaye, A., Miedema, F. and Akbar, A. 2005. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett 97:19–29.PubMedCrossRefGoogle Scholar
  89. Vieira, P. L., Kalinski, P., Wierenga, E. A., Kapsenberg, M. L. and de Jong, E. C. 1998. Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 161:5245–5251.PubMedGoogle Scholar
  90. Viswanathan, K., Daugherty, C. and Dhabhar, F. S. 2005. Stress as an endogenous adjuvant: augmentation of the immunization phase of cell-mediated immunity. Int Immunol 17:1059–1069.PubMedCrossRefGoogle Scholar
  91. Weiss, E. 1945. Psychosomatic Medicine. The American Journal of Nursing 45:189–193.Google Scholar
  92. Wolf, S. 1948. Experimental Research Into Psychosomatic Phenomena in Medicine. Science 107:637–639.PubMedCrossRefGoogle Scholar
  93. Woltman, A. M., de Fijter, J. W., Kamerling, S. W., Paul, L. C., Daha, M. R. and van Kooten, C. 2000. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur J Immunol 30:1807–1812.PubMedCrossRefGoogle Scholar
  94. Wood, P. G., Karol, M. H., Kusnecov, A. W. and Rabin, B. S. 1993. Enhancement of antigen-specific humoral and cell-mediated immunity by electric footshock stress in rats. Brain Behav Immun 7:121–134.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyRutgers UniversityPiscatwayUSA

Personalised recommendations