Skip to main content

Participation of Glial Cells in the Pathogenesis of AD: A Different View on Neuroinflammation

  • Chapter
  • First Online:
  • 971 Accesses

Abstract

Inflammation has been linked to Alzheimer's disease (AD). The accepted view is that inflammation is secondary to amyloid-β (Aβ) accumulation or neurodegeneration. However, I propose that glial dysfunction and the resulting imbalance between the cytotoxic inflammatory and neuroprotective-modulator activity could be the pathological mechanism behind AD. Such unbalance could be promoted by conditions like hypoxia and inflammation, which are frequently observed in aged individuals. A strong inflammatory response can promote defective processing of the amyloid-β protein precursor (AβPP) and the handling of Aβ by glial cells, resulting in the accumulation of Aβ and further inflammation. Proinflammatory conditions also enhance microglial cell activation by AβPP and Aβ and reduce astrocytes-mediated inhibition of microglial activation. These observations indicate that glial cell response to Aβ can be critically dependent on the priming of glial cells by proinflammatory factors. Astrocytes play a major role in the pathophysiology of AD, both promoting damage and mediating neuroprotection. Persistent inflammation can impair modulation and promote microglia-mediated neurotoxicity. Altogether, I propose that dysfunctional glia could result in both neuroinflammation and impaired neuronal function in AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Aβ:

amyloid-β

AβPP:

amyloid-β protein precursor

AD:

Alzheimer's disease

BACE 1:

β-secretase cleaving enzyme 1

CNS:

central nervous system

COX:

cyclooxygenase

COX-2:

inducible form of cyclooxygenase

ERK:

extracellular signal-regulated kinases

IFN-γ:

interferon-γ

IL-1β:

interleukin-1β

IL-6:

interleukin-6

iNOS:

inducible nitric oxide synthase

JNK:

jun N-terminal kinase

LPS:

lipopolysaccharide

LTP:

long-term potentiation

MAPKs:

mitogen-activated protein kinases

MCP-1:

monocyte chemotactic protein-1

MHC-class II:

major histocompatibility complex class II

MKP-1:

MAPK phosphatase type 1

NF-κB:

nuclear factor-κ B;

NGF:

nerve growth factor

NO:

nitric oxide

NSAIDs:

nonsteroidal anti-inflammatory drugs

ROS:

reactive oxygen species

SRs:

scavenger receptors

STAT1:

signal-transducer and activator of transcription-1

TGF-β:

transforming growth factor-β

TNF-α:

tumor necrosis factor-α

References

  1. Duyckaerts C, Colle MA, Dessi F, Crignon Y, Piette F, Hauw JJ (1998) The progression of the lesions in Alzheimer disease - insights from a prospective clinicopathological study. J Neural Trans Suppl 53: 119–126

    CAS  Google Scholar 

  2. de la Torre JC (2002) Alzheimer's disease as a vascular disorder: nosological evidence. Stroke 33: 1152–1162

    Article  PubMed  CAS  Google Scholar 

  3. Letiembre M, Hao W, Liu Y et al (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146: 248–254

    Article  PubMed  CAS  Google Scholar 

  4. Fassbender K, Walter S, Kuhl S et al (2004) The LPS receptor (CD14) links innate immunity with Alzheimer's disease. FASEB J 18:203–205

    PubMed  CAS  Google Scholar 

  5. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45: 208–212

    Article  PubMed  Google Scholar 

  6. Alarcón R, Fuenzalida C, Santibañez M, von Bernhardi R (2005) Expression of scavenger receptors in glial cells: comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound β-amyloid. J Biol Chem 280: 30406–30415

    Article  PubMed  Google Scholar 

  7. J, Wegiel , Imaki H, Wang KC, Wronska A, Osuchowski M, Rubenstein R (2003)) Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol (Berlin) 105: 393–402

    Google Scholar 

  8. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49: 489–502

    Article  PubMed  CAS  Google Scholar 

  9. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40: 195–205

    Article  PubMed  Google Scholar 

  10. Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37: 14–16

    Article  PubMed  CAS  Google Scholar 

  11. Wyss-Coray T, Loike JD, Brionne TC, et al (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9: 453–457

    Article  PubMed  CAS  Google Scholar 

  12. von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotoxicity Res 12: 1–18

    Article  Google Scholar 

  13. von Bernhardi R, Eugenín J (2004) Microglia - astrocyte interaction in Alzheimer's disease: modulation of cell reactivity to Aβ. Brain Res 1025: 186–193

    Article  PubMed  CAS  Google Scholar 

  14. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298: 789–791

    Article  PubMed  CAS  Google Scholar 

  15. von Bernhardi R, Ramírez G, Toro R, Eugenín J (2007) Pro-inflammatory conditions promote neuronal damage mediated by Amyloid Precursor Protein and degradation by microglial cells in culture. Neurobiol Dis 26: 153–164

    Article  PubMed  CAS  Google Scholar 

  16. Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer's disease: the two-hit hypothesis. Lancet Neurol 3: 219–226

    Article  PubMed  CAS  Google Scholar 

  17. Eikelenboom P, van Gool WA (2004) Neuroinflammatory perspectives on the two faces of Alzheimer's disease. J Neural Transm 111: 281–294

    Article  PubMed  CAS  Google Scholar 

  18. Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies. BMJ 327: 128–131

    Article  PubMed  CAS  Google Scholar 

  19. Lim GP, Yang F, Chu T et al (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model of Alzheimer's disease. J Neurosci 20: 5709–5714

    PubMed  CAS  Google Scholar 

  20. Rogers JT, Leiter LM, McPhee J et al (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274: 6421–6431

    Article  PubMed  CAS  Google Scholar 

  21. Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatos VE (2003) Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 14: 133–145

    Article  PubMed  CAS  Google Scholar 

  22. Bal-Price A, Brown C (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 17: 6480–6491

    Google Scholar 

  23. McGeer PL, McGeer ED (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21: 195–218

    Article  PubMed  CAS  Google Scholar 

  24. Herrera-Molina R, von Bernhardi R (2005) Transforming growth factor-α1 produced by hippocampal cells modulates glial reactivity in culture. Neurobiol Dis 19: 229–236

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen MD, Julien J-P, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3: 216–227

    Article  PubMed  CAS  Google Scholar 

  26. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55: 412–424

    Article  PubMed  Google Scholar 

  27. Smits HA, van Beelen AJ, de Vos NM et al (2001) Activation of human macrophages by amyloid-beta is attenuated by astrocytes. J Immunol 166: 6869–6876

    PubMed  CAS  Google Scholar 

  28. Sudo S, Tanaka J, Toku K et al (1998) Neurons induce the activation of microglial cell in vitro. Exp Neurol 154: 499–510

    Article  PubMed  CAS  Google Scholar 

  29. Basu A, Krady J, Levinson S (2004) Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res 78: 151–156

    Article  PubMed  CAS  Google Scholar 

  30. Dhandapani KM, Hadman M, De Sevilla L, Wade MF, Mahesh VB, Brann DW (2003) Astrocyte protection of neurons. Role of transforming growth factor-β signaling via c-jun-Ap-1 protective pathway. J Biol Chem 278: 43329–43339

    Article  PubMed  CAS  Google Scholar 

  31. McCarty MF (2006) Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 67: 251–269

    Article  PubMed  Google Scholar 

  32. Garcia-Alloza M, Ferrara BJ, Dodwell SA, Hickey GA, Hy-man BT, Bacskai BJ (2007) A limited role for microglia in anti-body mediated plaque clearance in APP mice. Neurobiol Dis doi:10.1016/j.nbd.2007.07.019

    Google Scholar 

  33. El Khuory J, Toft M, Hickman SE et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13: 432–438

    Article  Google Scholar 

Download references

Acknowledgments

I thank Dr. Jaime Eugenín for his longstanding support and his critical reading of the manuscript. I gratefully acknowledge technical support of G. Ramírez and support by grant 1040831 from FONDECYT to RvB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommy von Bernhardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bernhardi, R. (2009). Participation of Glial Cells in the Pathogenesis of AD: A Different View on Neuroinflammation. In: Maccioni, R.B., Perry, G. (eds) Current Hypotheses and Research Milestones in Alzheimer's Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87995-6_12

Download citation

Publish with us

Policies and ethics