Algebraic-Geometric Methods

  • René Vidal
  • Yi Ma
  • S. Shankar Sastry
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 40)


In this chapter, we consider a generalization of PCA in which the given sample points are drawn from an unknown arrangement of subspaces of unknown and possibly different dimensions.


Subspace Arrangements Minimum Effective Dimension (MED) Subspace Clustering Model-selection Criteria Multivariate Trimming (MVT) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Belhumeur, P., Hespanda, J., & Kriegeman, D. (1997). Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720.CrossRefGoogle Scholar
  2. Bochnak, J., Coste, M., & Roy, M. F. (1998). Real Algebraic Geometry. New York: Springer.Google Scholar
  3. Boult, T., & Brown, L. (1991). Factorization-based segmentation of motions. In IEEE Workshop on Motion Understanding (pp. 179–186).Google Scholar
  4. Broomhead, D. S., & Kirby, M. (2000). A new approach to dimensionality reduction theory and algorithms. SIAM Journal of Applied Mathematics, 60(6), 2114–2142.Google Scholar
  5. Campbell, N. (1978). The influence function as an aid in outlier detection in discriminant analysis. Applied Statistics, 27(3), 251–258.CrossRefzbMATHGoogle Scholar
  6. Costeira, J., & Kanade, T. (1998). A multibody factorization method for independently moving objects. International Journal of Computer Vision, 29(3), 159–179.CrossRefGoogle Scholar
  7. Critchley, F. (1985). Influence in principal components analysis. Biometrika, 72(3), 627–636.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Derksen, H. (2007). Hilbert series of subspace arrangements. Journal of Pure and Applied Algebra, 209(1), 91–98.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Eisenbud, D. (1996). Commutative algebra: With a view towards algebraic geometry. Graduate texts in mathematics. New York: Springer.Google Scholar
  10. Fischler, M. A., & Bolles, R. C. (1981). RANSAC random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 26, 381–395.Google Scholar
  11. Gnanadesikan, R., & Kettenring, J. (1972). Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28(1), 81–124.CrossRefGoogle Scholar
  12. Hampel, F., Ronchetti, E., Rousseeuw, P., & Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.zbMATHGoogle Scholar
  13. Hampel, F. R. (1974). The influence curve and its role in robust estiamtion. Journal of the American Statistical Association, 69, 383–393.Google Scholar
  14. Harris, J. (1992). Algebraic Geometry: A First Course. New York: Springer.CrossRefzbMATHGoogle Scholar
  15. Hirsch, M. (1976). Differential Topology. New York: Springer.CrossRefzbMATHGoogle Scholar
  16. Huang, K., Ma, Y., & Vidal, R. (2004). Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. II, pp. 631–638).Google Scholar
  17. Kanatani, K. (2001). Motion segmentation by subspace separation and model selection. In IEEE International Conference on Computer Vision (Vol. 2, pp. 586–591).Google Scholar
  18. Kanatani, K. (2002). Evaluation and selection of models for motion segmentation. In Asian Conference on Computer Vision (pp. 7–12).Google Scholar
  19. Leonardis, A., Bischof, H., & Maver, J. (2002). Multiple eigenspaces. Pattern Recognition, 35(11), 2613–2627.CrossRefzbMATHGoogle Scholar
  20. Ma, Y., & Vidal, R. (2005). Identification of deterministic switched ARX systems via identification of algebraic varieties. In Hybrid Systems: Computation and Control (pp. 449–465). New York: Springer.CrossRefGoogle Scholar
  21. Ma, Y., Yang, A. Y., Derksen, H., & Fossum, R. (2008). Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Review, 50(3), 413–458.Google Scholar
  22. Overschee, P. V., & Moor, B. D. (1993). Subspace algorithms for the stochastic identification problem. Automatica, 29(3), 649–660.Google Scholar
  23. Rao, S., Yang, A. Y., Wagner, A., & Ma, Y. (2005). Segmentation of hybrid motions via hybrid quadratic surface analysis. In IEEE International Conference on Computer Vision (pp. 2–9).Google Scholar
  24. Rousseeuw, P. (1984). Least median of squares regression. Journal of American Statistics Association, 79, 871–880.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Schindler, K., & Suter, D. (2005). Two-view multibody structure-and-motion with outliers. In IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
  26. Shizawa, M., & Mase, K. (1991). A unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 289–295).Google Scholar
  27. Steward, C. V. (1999). Robust parameter estimation in computer vision. SIAM Review, 41(3), 513–537.Google Scholar
  28. Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11), 1115–1138.CrossRefGoogle Scholar
  29. Tipping, M., & Bishop, C. (1999a). Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2), 443–482.Google Scholar
  30. Torr, P., & Davidson, C. (2003). IMPSAC: Synthesis of importance sampling and random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(3), 354–364.CrossRefGoogle Scholar
  31. Torr, P. H. S. (1998). Geometric motion segmentation and model selection. Philosophical Transactions of the Royal Society of London, 356(1740), 1321–1340.Google Scholar
  32. Vasilescu, M., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles: Tensorfaces. In Proceedings of European Conference on Computer Vision (pp. 447–460).Google Scholar
  33. Vidal, R., & Hartley, R. (2004). Motion segmentation with missing data by PowerFactorization and Generalized PCA. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. II, pp. 310–316).Google Scholar
  34. Vidal, R., & Ma, Y. (2004). A unified algebraic approach to 2-D and 3-D motion segmentation. In European Conference on Computer Vision (pp. 1–15).Google Scholar
  35. Vidal, R., Ma, Y., & Piazzi, J. (2004). A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. I, pp. 510–517).Google Scholar
  36. Vidal, R., Ma, Y., & Sastry, S. (2003b). Generalized Principal Component Analysis (GPCA). In IEEE Conference on Computer Vision and Pattern Recognition (Vol. I, pp. 621–628).Google Scholar
  37. Wu, Y., Zhang, Z., Huang, T., & Lin, J. (2001). Multibody grouping via orthogonal subspace decomposition. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 252–257).Google Scholar
  38. Yang, A. Y., Rao, S. R., & Ma, Y. (2006). Robust statistical estimation and segmentation of multiple subspaces. In CVPR workshop on 25 years of RANSAC.Google Scholar

Copyright information

© Springer-Verlag New York 2016

Authors and Affiliations

  • René Vidal
    • 1
  • Yi Ma
    • 2
  • S. Shankar Sastry
    • 3
  1. 1.Center for Imaging Science Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.School of Information Science and Technology ShanghaiTech UniversityShanghaiChina
  3. 3.Department of Electrical Engineering and Computer ScienceUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations