Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.
MathSciNet
CrossRef
MATH
Google Scholar
Bach, F. (2013). Convex relaxations of structured matrix factorizations. arXiv:1309.3117v1.
Google Scholar
Barnett, V., & Lewis, T. (1983). Outliers in statistical data (2nd ed.). New York: Wiley.
MATH
Google Scholar
Basri, R., & Jacobs, D. (2003). Lambertian reflection and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218–233.
CrossRef
Google Scholar
Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Optimization and computation (Vol. 2) Belmont: Athena Scientific.
Google Scholar
Brandt, S. (2002). Closed-form solutions for affine reconstruction under missing data. In In Proceedings Statistical Methods for Video Processing (ECCV’02 Workshop).
Google Scholar
Buchanan, A., & Fitzgibbon, A. (2005). Damped Newton algorithms for matrix factorization with missing data. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 316–322).
Google Scholar
Burer, S., & Monteiro, R. D. C. (2005). Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, Series A, 103(3), 427–444.
MathSciNet
CrossRef
MATH
Google Scholar
Cai, J.-F., Candés, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix completion. SIAM Journal of Optimization, 20(4), 1956–1982.
MathSciNet
CrossRef
MATH
Google Scholar
Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematics.
Google Scholar
Candès, E. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9–10), 589–592.
MathSciNet
CrossRef
MATH
Google Scholar
Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3).
Google Scholar
Candès, E., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936.
CrossRef
Google Scholar
Candès, E., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9, 717–772.
MathSciNet
CrossRef
MATH
Google Scholar
Candès, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.
MathSciNet
CrossRef
MATH
Google Scholar
Candès, E., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5), 2053–2080.
MathSciNet
CrossRef
Google Scholar
Chandrasekaran, V., Sanghavi, S., Parrilo, P., & Willsky, A. (2009). Sparse and low-rank matrix decompositions. In IFAC Symposium on System Identification.
Google Scholar
De la Torre, F., & Black, M. J. (2004). A framework for robust subspace learning. International Journal of Computer Vision, 54(1), 117–142.
MATH
Google Scholar
Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In Workshop on Generative Model Based Vision.
Google Scholar
Ferguson, T. (1961). On the rejection of outliers. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability.
Google Scholar
Fischler, M. A., & Bolles, R. C. (1981). RANSAC random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 26, 381–395.
MathSciNet
CrossRef
Google Scholar
Ganesh, A., Wright, J., Li, X., Candès, E., & Ma, Y. (2010). Dense error correction for low-rank matrices via principal component pursuit. In International Symposium on Information Theory.
Google Scholar
Geman, S., & McClure, D. (1987). Statistical methods for tomographic image reconstruction. In Proceedings of the 46th Session of the ISI, Bulletin of the ISI (Vol. 52, pp. 5–21).
Google Scholar
Goldfarb, D., & Ma, S. (2009). Convergence of fixed point continuation algorithms for matrix rank minimization. Preprint.
Google Scholar
Golub, H., & Loan, C. V. (1996). Matrix Computations (2nd ed.). Baltimore: Johns Hopkins University Press.
MATH
Google Scholar
Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans on Information Theory, 57(3), 1548–1566.
MathSciNet
CrossRef
Google Scholar
Gruber, A., & Weiss, Y. (2004). Multibody factorization with uncertainty and missing data using the EM algorithm. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. I, pp. 707–714).
Google Scholar
H.Aanaes, Fisker, R., Astrom, K., & Carstensen, J. M. (2002). Robust factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1215–1225.
Google Scholar
Haeffele, B., & Vidal, R. (2015). Global optimality in tensor factorization, deep learning, and beyond. Preprint, http://arxiv.org/abs/1506.07540.
Haeffele, B., Young, E., & Vidal, R. (2014). Structured low-rank matrix factorization: Optimality, algorithm, and applications to image processing. In International Conference on Machine Learning.
Google Scholar
Hardt, M. (2014). Understanding alternating minimization for matrix completion. In Symposium on Foundations of Computer Science.
Google Scholar
Hartley, R., & Schaffalitzky, F. (2003). Powerfactorization: An approach to affine reconstruction with missing and uncertain data. In Proceedings of Australia-Japan Advanced Workshop on Computer Vision.
Google Scholar
Huber, P. (1981). Robust Statistics. New York: Wiley.
CrossRef
MATH
Google Scholar
Jacobs, D. (2001). Linear fitting with missing data: Applications to structure-from-motion. Computer Vision and Image Understanding, 82, 57–81.
CrossRef
MATH
Google Scholar
Jain, P., Meka, R., & Dhillon, I. (2010). Guaranteed rank minimization via singular value projection. In Neural Information Processing Systems (pp. 937–945).
Google Scholar
Jain, P., & Netrapalli, P. (2014). Fast exact matrix completion with finite samples. In http://arxiv.org/pdf/1411.1087v1.pdf.
Jain, P., Netrapalli, P., & Sanghavi, S. (2012). Low-rank matrix completion using alternating minimization. In http://arxiv.org/pdf/1411.1087v1.pdf.
Johnson, C. (1990). Matrix completion problems: A survey. In Proceedings of Symposia in Applied Mathematics.
Google Scholar
Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.
MATH
Google Scholar
Ke, Q., & Kanade, T. (2005). Robust ℓ
1-norm factorization in the presence of outliers and missing data. In IEEE Conference on Computer Vision and Pattern Recognition.
Google Scholar
Keshavan, R., Montanari, A., & Oh, S. (2010a). Matrix completion from a few entries. IEEE Transactions on Information Theory.
Google Scholar
Keshavan, R., Montanari, A., & Oh, S. (2010b). Matrix completion from noisy entries. Journal of Machine Learning Research, 11, 2057–2078.
MathSciNet
MATH
Google Scholar
Keshavan, R. H. (2012). Efficient algorithms for collaborative filtering. Ph.D. Thesis. Stanford University.
Google Scholar
Kontogiorgis, S., & Meyer, R. (1989). A variable-penalty alternating direction method for convex optimization. Mathematical Programming, 83, 29–53.
MathSciNet
MATH
Google Scholar
Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards, 45, 255–282.
MathSciNet
CrossRef
Google Scholar
Lin, Z., Chen, M., Wu, L., & Ma, Y. (2011). The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055v2.
Google Scholar
Lions, P., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis, 16(6), 964–979.
MathSciNet
CrossRef
MATH
Google Scholar
Recht, B., Fazel, M., & Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.
MathSciNet
CrossRef
MATH
Google Scholar
Shum, H.-Y., Ikeuchi, K., & Reddy, R. (1995). Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9), 854–867.
CrossRef
Google Scholar
Soltanolkotabi, M., & Candès, E. J. (2013). A geometric analysis of subspace clustering with outliers. Annals of Statistics, 40(4), 2195–2238.
MathSciNet
CrossRef
MATH
Google Scholar
Steward, C. V. (1999). Robust parameter estimation in computer vision. SIAM Review, 41(3), 513–537.
MathSciNet
CrossRef
Google Scholar
Udell, M., Horn, C., Zadeh, R., & Boyd, S. (2015). Generalized low rank models. Working manuscript.
Google Scholar
Wiberg, T. (1976). Computation of principal components when data are missing. In Symposium on Computational Statistics (pp. 229–326).
Google Scholar
Wright, J., Ganesh, A., Kerui, M., & Ma, Y. (2013). Compressive principal component analysis. IMA Journal on Information and Inference, 2(1), 32–68.
CrossRef
MATH
Google Scholar
Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009a). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS.
Google Scholar
Xu, H., Caramanis, C., & Sanghavi, S. (2010). Robust pca via outlier pursuit. In Neural Information Processing Systems (NIPS).
Google Scholar
Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. Preprint.
Google Scholar
Zhou, M., Wang, C., Chen, M., Paisley, J., Dunson, D., & Carin, L. (2010a). Nonparametric bayesian matrix completion. In Sensor Array and Multichannel Signal Processing Workshop.
Google Scholar
Zhou, Z., Wright, J., Li, X., Candès, E., & Ma, Y. (2010b). Stable principal component pursuit. In International Symposium on Information Theory.
Google Scholar