Skip to main content

Thermoelastic Plates

  • Chapter
  • First Online:
Von Karman Evolution Equations

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1180 Accesses

Abstract

In this chapter we study well-posedness and regularity issues associated with thermoelastic plates. The PDE model of thermoelasticity consists of coupled second-order (plate) and first-order (heat) equations. For this reason, treatment of thermoelastic models does not follow from the corresponding treatment of abstract second-order equations. A new functional framework needs to be developed.

In this chapter we undertake a study of solutions associated with von Karman evolution equations subject to thermal dissipation. We consider models with and without the rotational inertia terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1–28.

    MathSciNet  Google Scholar 

  2. G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic plates with free boundary conditions and without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155–182.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15–55.

    MATH  MathSciNet  Google Scholar 

  4. I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; see also http://www.emis.de/monographs/Chueshov/

  5. I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Partial Diff. Eqs., 27 (2002), 1901–1951.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Dafermos, On the existence and asymptotic stability of solutions to to the equations of linear thermoelasticity, Arch. Ration. Mech. Anal., 29 (1968), 249–273.

    Article  MathSciNet  Google Scholar 

  7. J. M. Ghidaglia, Some backward uniqueness results, Nonlin. Anal., 10 (1986), 777–790.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Giorgi, M.G. Naso, V. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Diff. Eqs., 246 (2009) 3496–3517.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Ration. Mech. Anal., 25 (1967), 40–63.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.

    MATH  Google Scholar 

  11. S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Chapman and Hall/CRC, Boca Raton, FL, 2000.

    MATH  Google Scholar 

  12. T. Kato, Perturbation Theory of Linear Operators, Springer, New York, 1966.

    Google Scholar 

  13. H. Koch and I. Lasiecka, Backward uniqueness in linear thermo-elasticity with time and space variable coefficients. In: Functional Analysis and Evolution Equations. The Günter Lumer Volume, H. Amann et al., (Eds.), Birkhäuser, Basel, 2008, 389–405.

    Chapter  Google Scholar 

  14. I. Kukavica, Log-Log convexity and backward uniqueness, Proc. Amer. Math. Soc., 135 (2007), 2415–2421.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.

    MATH  Google Scholar 

  16. J. Lagnese and J.L. Lions Modeling, Analysis and Control of Thin Plates, Masson, Paris, 1988.

    Google Scholar 

  17. I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermo-elastic equations, Adv. Diff. Eqs., 3 (1998), 387–416.

    MATH  MathSciNet  Google Scholar 

  18. I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free B.C., Annali Scuola Normale Superiore Pisa, 27 (1998), 457–482.

    MATH  MathSciNet  Google Scholar 

  19. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  20. I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness of thermoelastic plates with rotational forces, Semigroup Forum, 62 (2001), 217–242.

    MATH  MathSciNet  Google Scholar 

  21. Z. Liu and M. Renardy, A note on the equation of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1–6.

    Article  MathSciNet  Google Scholar 

  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1986.

    Google Scholar 

  23. M. Potomkin, Asymptotic behaviour of solutions to nonlinear problem in thermoelasticity of plates, Rep. Nat. Acad. Sci. Ukraine, 2 (2009), 26–31, in Russian.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Chueshov .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media

About this chapter

Cite this chapter

Chueshov, I., Lasiecka, I. (2010). Thermoelastic Plates. In: Von Karman Evolution Equations. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87712-9_5

Download citation

Publish with us

Policies and ethics