Advertisement

Kac-Moody algebras and the structure of cosmological singularities: a new light on the Belinskii-Khalatnikov-Lifshitz analysis

  • Marc Henneaux
Conference paper

The unexpected and fascinating emergence of hyperbolic Coxeter groups and Lorentzian Kac-Moody algebras in the investigation of gravitational theories in the vicinity of a cosmological singularity is briefly reviewed. Some open questions raised by this intriguing result, and some attempts to answer them, are outlined.

Keywords

Weyl Group Simple Root Hyperbolic Space Dynkin Diagram Coxeter Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bao, M. Cederwall and B. E. W. Nilsson, Class. Quant. Grav. 25, 095001 (2008) [arXiv:0706.1183 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    L. Bao, J. Bielecki, M. Cederwall, B. E. W. Nilsson and D. Persson, JHEP 0807, 048 (2008) [arXiv:0710.4907 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    V. A. Belinsky and I. M. Khalatnikov, Sov. Sci. Rev. A 3, 555 (1981)Google Scholar
  4. 4.
    V. A. Belinsky, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).CrossRefADSGoogle Scholar
  5. 5.
    V. A. Belinsky, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 31, 639 (1982).CrossRefADSGoogle Scholar
  6. 6.
    E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Nucl. Phys. B 195, 97 (1982).CrossRefADSGoogle Scholar
  7. 7.
    E. A. Bergshoeff, I. De Baetselier and T. A. Nutma, JHEP 0709, 047 (2007) [arXiv:0705.1304 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    E. A. Bergshoeff, J. Gomis, T. Nutma and D. Roest, JHEP 02, 069 (2008) [arXiv:0711.2035 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    P. Breitenlohner, D. Maison and G. W. Gibbons, Commun. Math. Phys. 120, 295 (1988).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    G. F. Chapline and N. S. Manton, Phys. Lett. B 120, 105 (1983).ADSMathSciNetGoogle Scholar
  11. 11.
    D. M. Chitre, “Investigations of Vanishing of a Horizon for Bianchi Type X (the Mixmaster) Universe”, Ph.D. thesis, University of Maryland, College Park, MD.Google Scholar
  12. 12.
    E. Cremmer and B. Julia, Nucl. Phys. B 159, 141 (1979).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    E. Cremmer, B. Julia and J. Scherk, Phys. Lett. B 76, 409 (1978).ADSGoogle Scholar
  14. 14.
    E. Cremmer, B. Julia, H. Lu and C. N. Pope, (unpublished). arXiv:hep-th/9909099.Google Scholar
  15. 15.
    T. Damour and M. Henneaux, Phys. Rev. Lett. 85, 920–923 (2000) [arXiv:hep-th/0003139].zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    T. Damour and M. Henneaux, Phys. Lett. B 488, 108 (2000) [Erratum-ibid. B 491 (2000) 377] [arXiv:hep-th/0006171].ADSMathSciNetGoogle Scholar
  17. 17.
    T. Damour and M. Henneaux, Phys. Rev. Lett. 86, 4749 (2001) [arXiv:hep-th/0012172].CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    T. Damour and H. Nicolai, in 25th International Colloquium on Group Theoretical Methods in Physics (ICGTMP), Cocoyoc, Mexico, August 2004. arXiv:hep-th/0410245.Google Scholar
  19. 19.
    T. Damour and H. Nicolai, Class. Quant. Grav. 22, 2849 (2005) [arXiv:hep-th/0504153].zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    T. Damour, M. Henneaux, B. Julia and H. Nicolai, Phys. Lett. B 509, 323 (2001) [arXiv:hep-th/0103094].ADSMathSciNetGoogle Scholar
  21. 21.
    T. Damour, S. de Buyl, M. Henneaux and C. Schomblond, JHEP 0208, 030 (2002) [arXiv:hep-th/0206125].CrossRefADSGoogle Scholar
  22. 22.
    T. Damour, M. Henneaux and H. Nicolai, Phys. Rev. Lett. 89, 221601 (2002) [arXiv:hep-th/0207267].CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    T. Damour, M. Henneaux and H. Nicolai, Class. Quant. Grav. 20, R145 (2003) [arXiv:hep-th/0212256].zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    T. Damour, A. Kleinschmidt and H. Nicolai, Phys. Lett. B 634, 319 (2006) [arXiv:hep-th/0512163].ADSMathSciNetGoogle Scholar
  25. 25.
    T. Damour, A. Hanany, M. Henneaux, A. Kleinschmidt and H. Nicolai, Gen. Rel. Grav. 38, 1507 (2006) [arXiv:hep-th/0604143].zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    T. Damour, A. Kleinschmidt and H. Nicolai, JHEP 0608, 046 (2006) [arXiv:hep-th/0606105].CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    S. de Buyl, M. Henneaux and L. Paulot, Class. Quant. Grav. 22, 3595 (2005) [arXiv:hep-th/0506009].CrossRefADSGoogle Scholar
  28. 28.
    S. de Buyl, M. Henneaux and L. Paulot, JHEP 0602, 056 (2006) [arXiv:hep-th/0512292].CrossRefGoogle Scholar
  29. 29.
    J. Demaret, M. Henneaux and P. Spindel, Phys. Lett. B 164, 27 (1985).ADSMathSciNetGoogle Scholar
  30. 30.
    J. Demaret, J. L. Hanquin, M. Henneaux, P. Spindel and A. Taormina, Phys. Lett. B 175, 129 (1986).ADSMathSciNetGoogle Scholar
  31. 31.
    J. Demaret, Y. De Rop and M. Henneaux, Phys. Lett. B 211, 37 (1988).ADSMathSciNetGoogle Scholar
  32. 32.
    J. Demaret, Y. De Rop and M. Henneaux, Int. J. Theor. Phys. 28, 1067 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    F. Englert, L. Houart, A. Taormina and P. West, JHEP 09, 020 (2003) [arXiv:hep-th/0304206].CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    A. J. Feingold and I. B. Frenkel, Math. Ann. 263, 87 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    M. Henneaux, Geometry of Zero Signature Space–Times, Preprint PRINT-79-0606-Princeton (unpublished).Google Scholar
  36. 36.
    M. Henneaux and B. Julia, JHEP 0305, 047 (2003) [arXiv:hep-th/0304233].CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    M. Henneaux, M. Pilati and C. Teitelboim, Phys. Lett. B 110, 123 (1982).ADSMathSciNetGoogle Scholar
  38. 38.
    M. Henneaux, D. Persson and P. Spindel, Living Rev. Rel. 11, 1 (2008) [arXiv:0710.1818 [hep-th]].Google Scholar
  39. 39.
    M. Henneaux, D. Persson and D. H. Wesley, JHEP 0809, 052 (2008) [arXiv:0805.3793 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    P. Henry-Labordere, B. Julia and L. Paulot, JHEP 0204, 049 (2002) [arXiv:hep-th/0203070].CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    V. D. Ivashchuk and V. N. Melnikov, Class. Quant. Grav. 12, 809 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    V. D. Ivashchuk and V. N. Melnikov, J. Math. Phys. 41, 6341 (2000) [arXiv:hep-th/9904077].zbMATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    B. Julia, Proc. AMS-SIAM Chicago Meeting July 1982, Lectures in Applied Mathematics, AMS-SIAM, Vol. 21 (1985), p. 355.MathSciNetGoogle Scholar
  44. 44.
    B. Julia, “Group Disintegrations”, Invited Paper Presented at Nuffield Gravity Workshop, Cambridge, England, Jun 22–Jul 12, 1980.Google Scholar
  45. 45.
    V. G. Kac, Infinite Dimensional Lie Algebras, third edition, Cambridge University Press, Cambridge (1990).zbMATHCrossRefGoogle Scholar
  46. 46.
    I. M. Khalatnikov and A. Y. Kamenshchik, arXiv:0803.2684 [gr-qc] (unpublished).Google Scholar
  47. 47.
    N. Lambert and P. West, Phys. Rev. D 74, 065002 (2006) [arXiv:hep-th/0603255].ADSMathSciNetGoogle Scholar
  48. 48.
    N. Lambert and P. West, Phys. Rev. D 75, 066002 (2007) [arXiv:hep-th/0611318].ADSMathSciNetGoogle Scholar
  49. 49.
    N. Marcus and J. H. Schwarz, Nucl. Phys. B 228, 145 (1983).CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).zbMATHCrossRefADSGoogle Scholar
  51. 51.
    C. W. Misner, “The Mixmaster cosmological metrics” in Deterministic Chaos in General Relativity, D. Hobill, A. Burd and A. Coley, editors. Nato ASI Series B vol. 332, Plenum, 1994. [arXiv:gr-qc/9405068].Google Scholar
  52. 52.
    H. Nicolai, Phys. Lett. B 276, 333 (1992).ADSMathSciNetGoogle Scholar
  53. 53.
    I. Schnakenburg and P. C. West, Phys. Lett. B 540, 137 (2002) [arXiv:hep-th/0204207].ADSMathSciNetGoogle Scholar
  54. 54.
    F. Riccioni and P. West, JHEP 0707, 063 (2007) [arXiv:0705.0752 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    F. Riccioni and P. West, JHEP 02, 039 (2008) [arXiv:0712.1795 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    C. Teitelboim, The Hamiltonian Structure of Space–Time, Preprint PRINT-78-0682-Princeton (unpublished).Google Scholar
  57. 57.
    C. Teitelboim, In Held, A.(Ed.): General Relativity and Gravitation, Vol. 1, 195–225.Google Scholar
  58. 58.
    D. H. Wesley, P. J. Steinhardt and N. Turok, Phys. Rev. D 72, 063513 (2005) [arXiv:hep-th/0502108].ADSGoogle Scholar
  59. 59.
    Vinberg , eds., Geometry II – Spaces of Constant Curvature, Springer, Berlin (1993).zbMATHGoogle Scholar
  60. 60.
    P. West, Class. Quant. Grav. 18, 4443 (2001) [arXiv:hep-th/0104081].zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Physique théorique et mathématiqueUniversité Libre de Bruxelles and International Solvay InstitutesBelgium

Personalised recommendations