Skip to main content

Pulmonary Vascular Function

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

The pulmonary circulation is a low-pressure and high-flow circuit. The low pressure prevents fluid moving out of the pulmonary vessels into the interstitial space, and allows the right ventricle to operate at a low energy cost. The flow is matched to ventilation for pulmonary gas exchange. As a low-pressure system, the pulmonary circulation is very sensitive to mechanical influences, and the thin-walled right ventricle is poorly prepared for rapidly increased loading conditions. The pulmonary circulation is functionally coupled to the right ventricle. Pulmonary pressure–flow relationships are determined by a dynamic interaction between ventricular pump function and mechanical properties of the pulmonary arterial tree. In this respect, it is always important to remember that the pulsatility of the pulmonary circulation is greater than that in the systemic bed. The ratio of pulse pressure over mean pressure in the pulmonary artery is about unity, whereas in the aorta, pulse pressure is about 40% of mean pressure, implying that pulsatile energy to be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lankhaar JW, Westerhof N, Faes TJ et al (2006) Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol 291:H1731–H1737

    Article  PubMed  CAS  Google Scholar 

  2. Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116

    PubMed  CAS  Google Scholar 

  3. Naeije R, Mélot C, Mols P, Hallemans R (1982) Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 82:404–410

    Article  PubMed  CAS  Google Scholar 

  4. Mélot C, Naeije R, Hallemans R, Lejeune P, Mols P (1987) Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol 68:11–27

    Article  PubMed  Google Scholar 

  5. Maggiorini M, Mélot C, Pierre S et al (2001) High altitude pulmonary edema is initially caused by an increased capillary pressure. Circulation 103:2078–2083

    PubMed  CAS  Google Scholar 

  6. Holmgren A, Jonsson B, Sjostrand T (1960) Circulatory data in normal subjects at rest and during exercise in the recumbent position, with special reference to the stroke volume at different working intensities. Acta Physiol Scand 49:343–363

    Article  PubMed  CAS  Google Scholar 

  7. Granath A, Strandell T (1964) Relationships between cardiac output, stroke volume, and intracardiac pressures at rest and during exercise in supine position and some anthropometric data in healthy old men. Acta Med Scand 176:447–466

    Article  PubMed  CAS  Google Scholar 

  8. Granath A, Jonsson B, Strandell T (1964) Circulation in healthy old men, studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med Scand 76:425–446

    Article  PubMed  CAS  Google Scholar 

  9. Bevegaard S, Holmgren A, Jonsson B (1963) Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position. Acta Physiol Scand 57:26–50

    Article  Google Scholar 

  10. Naeije R (2003) Pulmonary vascular resistance: a meaningless variable? Intensive Care Med 29:526–529

    PubMed  Google Scholar 

  11. Permutt S, Bromberger-Barnea B, Bane HN (1962) Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med Thorac 19:239–260

    PubMed  CAS  Google Scholar 

  12. Zhuang FY, Fung YC, Yen RT (1983) Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J Appl Physiol 55:1341–1348

    PubMed  CAS  Google Scholar 

  13. Nelin LD, Krenz GS, Rickaby DA, Linehan JH, Dawson CA (1992) A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig. J Appl Physiol 73:987–994

    PubMed  Google Scholar 

  14. Glazier JB, Hughes JMB, Maloney JE, West JB (1969) Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol 26:65–76

    PubMed  CAS  Google Scholar 

  15. Mélot C, Delcroix M, Lejeune P, Leeman M, Naeije R (1995) Starling resistor versus viscoelastic models for embolic pulmonary hypertension. Am J Physiol 267:H817–H827

    Google Scholar 

  16. Tolle JJ, Waxman AB, Van Horn TL, Pappagianopoulos PP, Systrom DM (2008) Exercise-induced pulmonary arterial hypertension. Circulation 118:2183–2189

    Article  PubMed  Google Scholar 

  17. Janicki JS, Weber KT, Likoff MJ, Fishman AP (1985) The pressure–flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. Circulation 72:1270–1278

    PubMed  CAS  Google Scholar 

  18. Kafi AS, Mélot C, Vachiéry JL, Brimioulle S, Naeije R (1998) Partitioning of pulmonary vascular resistance in primary pulmonary hypertension. J Am Coll Cardiol 31:1372–1376

    Article  PubMed  CAS  Google Scholar 

  19. Reeves JT, Dempsey JA, Grover RF (1989) Pulmonary circulation during exercise. In: Weir EK, Reeves JT (eds) Pulmonary vascular physiology and physiopathology. Dekker, New York, pp 107–133

    Google Scholar 

  20. Reeves JT, Groves BM, Cymerman A et al (1990) Operation Everest II: cardiac filling pressures during cycle exercise at sea level. Respir Physiol 80:147–154

    Article  PubMed  CAS  Google Scholar 

  21. Howell JBL, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of the pulmonary vascular bed. J Appl Physiol 16:71–76

    PubMed  CAS  Google Scholar 

  22. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    PubMed  CAS  Google Scholar 

  23. Hughes JM, Glazier JB, Maloney JR, West JB (1968) Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 4:58–72

    Article  PubMed  CAS  Google Scholar 

  24. Hakim TS, Lisbona R, Michel RP, Dean GW (1993) Role of vasoconstriction in gravity-nondependent central–peripheral gradient in pulmonary blood flow. J Appl Physiol 63:1114–1121

    Google Scholar 

  25. Glenny R (2008) Counterpoint: gravity is not the major factor determining the distribution of blood flow in the healthy human lung. J Appl Physiol 104:1533–1535

    Article  PubMed  Google Scholar 

  26. Hughes M, West JB (2008) Point: counterpoint: gravity is/is not the major factor determining the distribution of blood flow in the human lung. J Appl Physiol 104:1531–1533

    Article  PubMed  Google Scholar 

  27. von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320

    Article  Google Scholar 

  28. Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9:183–189

    PubMed  CAS  Google Scholar 

  29. Hillier SC, Graham JA, Hanger CC, Godbey P, Glenny RW, Wagner WW (1997) Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 82:1084–1090

    PubMed  CAS  Google Scholar 

  30. Grant BJB, Davies EE, Jones HA, Hughes JMB (1976) Local regulation of pulmonary blood flow and ventilation–perfusion ratios in the coatimundi. J Appl Physiol 40:216–228

    PubMed  CAS  Google Scholar 

  31. Marshall BE, Marshall C (1988) A model for hypoxic constriction of the pulmonary circulation. J Appl Physiol 64:68–77

    Article  PubMed  CAS  Google Scholar 

  32. Brimioulle S, Lejeune P, Naeije R (1996) Effects of hypoxic ­pulmonary vasoconstriction on gas exchange. J Appl Physiol 81:1535–1543

    PubMed  CAS  Google Scholar 

  33. Sommer N, Dietrich A, Schermuly RT et al (2008) Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 32:1639–1651

    Article  PubMed  CAS  Google Scholar 

  34. Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436

    Article  PubMed  CAS  Google Scholar 

  35. Downing SE, Lee JC (1980) Nervous control of the pulmonary circulation. Annu Rev Physiol 42:199–210

    Article  PubMed  CAS  Google Scholar 

  36. Westerhof N, Stergiopulos N, Noble MIM (2005) Snapshots of hemodynamics an aid for clinical research and graduate education. Springer, New York

    Google Scholar 

  37. Murgo JP, Westerhof N (1984) Input impedance of the pulmonary arterial system in normal man. Effects of respiration and comparison to systemic impedance. Circ Res 54:666–673

    PubMed  CAS  Google Scholar 

  38. Kussmaul WG, Noordergraaf A, Laskey WK (1992) Right ventricular–pulmonary arterial interactions. Ann Biomed Eng 20:63–80

    Article  PubMed  CAS  Google Scholar 

  39. Huez S, Brimioulle S, Naeije R, Vachiery JL (2004) Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension. Chest 125:2121–2128

    Article  PubMed  Google Scholar 

  40. Laskey W, Ferrari V, Palevsky H, Kussmaul W (1993) Pulmonary artery hemodynamics in primary pulmonary hypertension. J Am Coll Cardiol 21:406–412

    Article  PubMed  CAS  Google Scholar 

  41. Furuno Y, Nagamoto Y, Fujita M, Kaku T, Sakurai S, Kuroiwa A (1991) Reflection as a cause of mid-systolic deceleration of pulmonary flow wave in dogs with acute pulmonary hypertension: comparison of pulmonary artery constriction with pulmonary embolisation. Cardiovasc Res 25:118–124

    Article  PubMed  CAS  Google Scholar 

  42. Fitzpatrick JM, Grant BJB (1990) Effects of pulmonary vascular obstruction on right ventricular afterload. Am Rev Respir Dis 141:944–952

    PubMed  CAS  Google Scholar 

  43. Lankhaar JW, Westerhof N, Faes TJ et al (2008) Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J 29:1688–1695

    Article  PubMed  Google Scholar 

  44. Elzinga G, Westerhof N (1973) Pressure and flow generated by the left ventricle against different impedances. Circ Res 32: 178–186

    PubMed  CAS  Google Scholar 

  45. Chemla D, Castelain V, Humbert M et al (2004) New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 126:1313–1317

    Article  PubMed  Google Scholar 

  46. Syyed R, Reeves JT, Welsh D, Raeside D, Johnson MK, Peacock AJ (2008) The relationship between the components of pulmonary artery pressure remains constant under all conditions in both health and disease. Chest 133:633–639

    Article  PubMed  Google Scholar 

  47. Yock P, Popp R (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    PubMed  CAS  Google Scholar 

  48. Westerhof N, Sipkema P, van den Bos GC, Elzinga G (1972) Forward and backward waves in the arterial system. Cardiovasc Res 6:648–656

    Article  PubMed  CAS  Google Scholar 

  49. van den Bos GC, Westerhof N, Randall OS (1982) Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res 51:479–485

    PubMed  Google Scholar 

  50. Nakayama Y, Nakanishi N, Hayashi T, Nagaya N, Sakamaki F, Satoh N, Ohya H, Kyotani S (2001) Pulmonary artery reflection for differentially diagnosing primary pulmonary hypertension and chronic pulmonary thromboembolism. J Am Coll Cardiol 38:214–218

    Article  PubMed  CAS  Google Scholar 

  51. Castelain V, Hervé P, Lecarpentier Y, Duroux P, Simonneau G, Chemla D (2001) Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol 37:1085–1092

    Article  PubMed  CAS  Google Scholar 

  52. Hardziyenka M, Reesink HJ, Bouma BJ et al (2007) A novel echocardiographic predictor of in-hospital mortality and mid-term haemodynamic improvement after pulmonary endarterectomy for chronic thrombo-embolic pulmonary hypertension. Eur Heart J 28:842–849

    Article  PubMed  Google Scholar 

  53. Overbeek MJ, Lankhaar JW, Westerhof N et al (2008) Right ventricular contractility in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. Eur Respir J 31:1160–1166

    Article  PubMed  CAS  Google Scholar 

  54. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in the isolated canine left ventricle. Circ Res 56:586–595

    PubMed  CAS  Google Scholar 

  55. Sagawa K, Maughan L, Suga H, Sunagawa K (1988) Cardiac contraction and the pressure–volume relationship. Oxford University Press, New York

    Google Scholar 

  56. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and the effect of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  CAS  Google Scholar 

  57. Sunagawa K, Yamada A, Senda Y, Kikuchi Y, Nakamura M, Shibahara T (1980) Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng 57:299–305

    Article  Google Scholar 

  58. Brimioulle S, Wauthy P, Ewalenko P et al (2003) Single-beat estimation of right ventricular end-systolic pressure–volume relationship. Am J Physiol Heart Circ Physiol 284:H1625–H1630

    PubMed  CAS  Google Scholar 

  59. Kerbaul F, Rondelet B, Motte S et al (2004) Isoflurane and desflurane impair right ventricular-pulmonary arterial coupling in dogs. Anesthesiology 101:1357–1361

    Article  PubMed  CAS  Google Scholar 

  60. Kerbaul F, Brimioulle S, Rondelet B, Dewachter C, Hubloue I, Naeije R (2007) How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am J Respir Crit Care Med 175:846–850

    Article  PubMed  CAS  Google Scholar 

  61. Kuehne T, Yilmaz S, Steendijk P et al (2004) Magnetic resonance imaging analysis of right ventricular pressure–volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110:2010–2016

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Naeije .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naeije, R., Westerhof, N. (2011). Pulmonary Vascular Function. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics