Skip to main content

Cellular and Molecular Mechanisms of Pulmonary Vascular Smooth Muscle Cell Proliferation

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

Pulmonary arterial hypertension is the end result of a complex series of events termed “vascular remodeling,” which includes proliferation of resident smooth muscle cells in the walls of small muscular pulmonary arteries. This process leads to increased thickness of the smooth muscle component of the vessel wall, which then contributes to reduced lumen diameter and increased contractility. Since smooth muscle cell proliferation contributes significantly to the process of vascular remodeling, it is important to appreciate the main factors driving this process in the hypertensive lung. This chapter will review the basic mechanisms of vascular smooth muscle cell proliferation, focusing on work in pulmonary vascular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 2004, Cell cycle control and cell death. In: Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) Essential cell biology, 2nd edn. Garland Science, New York, pp 609–636

    Google Scholar 

  2. 2008, Regulating the eukaryotic cell cycle. In: Lodish H BA, Kaiser CA, Krieger M, Scott MP, Bretcher A, Ploegh H, Matsudaira P (eds) Molecular cell biology, 6th edn. Freeman, New York, pp 847–903

    Google Scholar 

  3. 2004, The cell cycle. In: Cooper GM, Hausman RE (ed) The cell: a molecular approach, 3rd edn. Sinauer Associates, Sunderland, pp 591–630

    Google Scholar 

  4. Prosser I, Stenmark K, Suthar M, Crouch E, Mecham R, Parks W (1989) Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am J Pathol 135:1073–1088

    PubMed  CAS  Google Scholar 

  5. Frid MG, Moiseeva EP, Stenmark KR (1994) Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circ Res 75:669–681

    PubMed  CAS  Google Scholar 

  6. Frid MG, Aldashev AA, Dempsey EC, Stenmark KR (1997) Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res 81:940–952

    PubMed  CAS  Google Scholar 

  7. Frid MG, Dempsey EC, Durmowicz AG, Stenmark KR (1997) Smooth muscle cell heterogeneity in pulmonary and systemic vessels: importance in vascular disease. Arterioscler Thromb Vasc Biol 17:1203–1209

    PubMed  CAS  Google Scholar 

  8. Stevens T, Phan S, Frid M, Alvarez D, Herzog E, Stenmark K (2008) Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc 5:783–791

    PubMed  CAS  Google Scholar 

  9. Frid MG, Aldashev AA, Nemenoff RA, Higashito R, Westcott JY, Stenmark KR (1999) Subendothelial cells from normal bovine arteries exhibit autonomous growth and constitutively activated intracellular signaling. Arterioscler Thromb Vasc Biol 19:2884–2893

    PubMed  CAS  Google Scholar 

  10. Archer SL (1996) Diversity of phenotypes and function of vascular smooth muscle cells. J Lab Clin Med 127:524–529

    PubMed  CAS  Google Scholar 

  11. Archer S (2005) Pre-B-cell colony-enhancing factor regulates vascular smooth muscle maturation through a NAD-dependent mechanism: recognition of a new mechanism for cell diversity and redox regulation of vascular tone and remodeling. Circ Res 97:4–7

    PubMed  CAS  Google Scholar 

  12. Yang X, Long L, Southwood M et al (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063

    PubMed  CAS  Google Scholar 

  13. Wharton J, Davie N, Upton PD, Yacoub MH, Polak JM, Morrell NW (2000) Prostacyclin analogues differentially inhibit growth of distal and proximal human pulmonary artery smooth muscle cells. Circulation 102:3130–3136

    PubMed  CAS  Google Scholar 

  14. Newby A, George S (1996) Proliferation, migration, matrix turnover and death of smooth muscle cells in native coronary and vein graft atherosclerosis. Curr Opin Cardiol 11:574–582

    PubMed  CAS  Google Scholar 

  15. Raines E (2000) The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol 81:173–182

    PubMed  CAS  Google Scholar 

  16. George S, Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14:100–105

    PubMed  CAS  Google Scholar 

  17. Hultgårdh-Nilsson A, Lövdahl C, Blomgren K, Kallin B, Thyberg J (1997) Expression of phenotype- and proliferation-related genes in rat aortic smooth muscle cells in primary culture. Cardiovasc Res 34:418–430

    PubMed  Google Scholar 

  18. Hedin U, Bottger B, Forsberg E, Johansson S, Thyberg J (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107:307–319

    PubMed  CAS  Google Scholar 

  19. Koyama H, Raines E, Bornfeldt K, Roberts J (1996) R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078

    PubMed  CAS  Google Scholar 

  20. Li D, Brooke B, Davis E (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–280

    PubMed  CAS  Google Scholar 

  21. Fritze L, Reilly C, Rosenberg R (1985) An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol 100:1041–1049

    PubMed  CAS  Google Scholar 

  22. Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    PubMed  CAS  Google Scholar 

  23. Spivak-Kroizman T, Lemmon M, Dikic I et al (1994) Heparin induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79:1015–1024

    PubMed  CAS  Google Scholar 

  24. Sage E, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem 266:14831–14834

    PubMed  CAS  Google Scholar 

  25. Jones PL, Cowan KN, Rabinovitch M (1997) Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol 150:1349–1360

    PubMed  CAS  Google Scholar 

  26. Jones PL, Crack J, Rabinovitch M (1997) Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the αvβ3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293

    PubMed  CAS  Google Scholar 

  27. Galis Z, Khatri J (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262

    PubMed  CAS  Google Scholar 

  28. Lövdahl C, Thyberg J, Hultgårdh-Nilsson A (2000) The synthetic metalloproteinase inhibitor batimastat suppresses injury induced phosphorylation of MAP kinase ERK1/ERK2 and phenotypic modification of arterial smooth muscle cells in vitro. J Vasc Res 37:345–354

    PubMed  Google Scholar 

  29. Southgate K, Davies M, Booth R, Newby A (1992) Involvement of extracellular-matrix-degrading metalloproteinases in rabbit aortic smooth-muscle cell proliferation. Biochem J 288:93–99

    PubMed  CAS  Google Scholar 

  30. Baker A, Zaltsman A, George S, Newby A (1998) Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest 101:10478–10487

    Google Scholar 

  31. Whitelock J, Murdoch A, Iozzo R, Underwood P (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    PubMed  CAS  Google Scholar 

  32. Bar-Saqi D, Hall A (2000) Ras and Rho GTPases: a family reunion. Cell 103:193–200

    Google Scholar 

  33. Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5:747–757

    PubMed  CAS  Google Scholar 

  34. Hunter T (2000) Signaling- 2000 and beyond. Cell 100:113–127

    PubMed  CAS  Google Scholar 

  35. Datta S, Brunet A, Greeberg M (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    PubMed  CAS  Google Scholar 

  36. Yu Y, Sweeney M, Zhang S et al (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–C330

    PubMed  CAS  Google Scholar 

  37. Perros F, Montani D, Dorfmüller P et al (2008) Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 178:81–88

    PubMed  CAS  Google Scholar 

  38. Goumans M-J, Liu Z (2009) TGFβ signalling in vascular biology and dysfunction. Cell Res 19:116–127

    PubMed  CAS  Google Scholar 

  39. Blobe G, Schiemann W, Lodish H (2000) Role of transforming growth factor β in human disease. N Engl J Med 342:1350–1358

    PubMed  CAS  Google Scholar 

  40. Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84

    PubMed  CAS  Google Scholar 

  41. McAllister K, Grogg K, Johnson D (1994) Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    PubMed  CAS  Google Scholar 

  42. Berg J, Gallione C, Stenzel T (1997) The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am J Hum Genet 61:60–67

    PubMed  CAS  Google Scholar 

  43. Kaplan F, Xu M, Seemann P (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30:379–390

    PubMed  CAS  Google Scholar 

  44. ten Dijke P, Arthur H (2007) Extracellular control of TGFβ signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    PubMed  Google Scholar 

  45. ten Dijke P, Goumans M, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11:79–89

    PubMed  CAS  Google Scholar 

  46. del Re E, Babitt J, Pirani A, Schneyer A, Lin H (2004) In the absence of type III receptor, the transforming growth factor (TGF)-β type II-B receptor requires the type I receptor to bind TGF-β2. J Biol Chem 279:22765–22772

    PubMed  Google Scholar 

  47. Sankar S, Mahooti-Brooks N, Centrella M, McCarthy T, Madri J (1995) Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor β2. J Biol Chem 270:13567–13572

    PubMed  CAS  Google Scholar 

  48. Cheifetz S, Bellón T, Calés C (1992) Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J Biol Chem 267:19027–19030

    PubMed  CAS  Google Scholar 

  49. Lastres P, Letamendía A, Zhang H (1996) Endoglin modulates cellular responses to TGF-β1. J Cell Biol 133:1109–1121

    PubMed  CAS  Google Scholar 

  50. Scharpfenecker M, van Dinther M, Liu Z et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972

    PubMed  CAS  Google Scholar 

  51. David L, Mallet C, Mazerbourg S, Feige J, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109:1953–1961

    PubMed  CAS  Google Scholar 

  52. David L, Mallet C, Keramidas M et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102:914–922

    PubMed  CAS  Google Scholar 

  53. Schmierer B, Hill C (2007) TGFβ-Smad signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982

    PubMed  CAS  Google Scholar 

  54. Shi Y, Massagué J (2003) Mechanism of TGF-β signalling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  55. Ross S, Hill C (2008) How the Smads regulate transcription. Int J Biochem Cell Biol 40:383–403

    PubMed  CAS  Google Scholar 

  56. Hill C (2009) Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19:36–46

    PubMed  CAS  Google Scholar 

  57. Bobik A (2006) Transforming growth factor-βs and vascular disorders. Arterioscler Thromb Vasc Biol 26:1712–1720

    PubMed  CAS  Google Scholar 

  58. Seay U, Sedding D, Krick S, Hecker M, Seeger W, Eickelberg O (2005) TGF-β-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J Pharmacol Exp Ther 315:1005–1012

    PubMed  CAS  Google Scholar 

  59. Feinberg M, Watanabe M, Lebedeva M (2004) Transforming growth factor-β1 inhibition of vascular smooth muscle cell activation is mediated via Smad3. J Biol Chem 279:16388–16393

    PubMed  CAS  Google Scholar 

  60. Willette R, Gu J, Lysko P, Anderson K, Minehart H, Yue T (1999) BMP-2 gene expression and effects on human vascular smooth muscle cells. J Vasc Res 36:120–125

    PubMed  CAS  Google Scholar 

  61. Hansmann G (2008) de Jesus Perez VA, Alastalo T-P, et al. An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 118:1846–1857

    PubMed  CAS  Google Scholar 

  62. Yang J, Davies R, Southwood M et al (2008) Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ Res 102:1212–1221

    PubMed  CAS  Google Scholar 

  63. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372:231–236

    PubMed  CAS  Google Scholar 

  64. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    PubMed  CAS  Google Scholar 

  65. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  66. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  67. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    PubMed  CAS  Google Scholar 

  68. Ganitkevich VY, Isenberg G (1993) Membrane potential modulates inositol 1,4,5-triphosphate-mediated Ca2+ transients in guinea-pig coronary myocytes. J Physiol 470:35–44

    PubMed  CAS  Google Scholar 

  69. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    PubMed  CAS  Google Scholar 

  70. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    PubMed  CAS  Google Scholar 

  71. Golovina VA, Platoshyn O, Bailey CL et al (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755

    PubMed  CAS  Google Scholar 

  72. Platoshyn O, Golovina VA, Bailey CL et al (2000) Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 279:C1540–C1549

    PubMed  CAS  Google Scholar 

  73. Hardingham GE, Cruzalegui FH, Chawla S, Bading H (1998) Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium 23:131–134

    PubMed  CAS  Google Scholar 

  74. Michiels C, Minet E, Michel G, Mottet D, Piret J-P, Raes M (2001) HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: Role of MAP kinases. IUBMB Life 52:49–53

    PubMed  CAS  Google Scholar 

  75. Semenza GL (2000) Oxygen-regulated transcription factors and their role in pulmonary disease. Respir Res 1:159–162

    PubMed  CAS  Google Scholar 

  76. Mandegar M, Fung Y-CB, Huang W, Remillard CV, Rubin LJ, Yuan JX-J (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 68:75–103

    PubMed  CAS  Google Scholar 

  77. Mogami H, Kojima I (1993) Stimulation of calcium entry is prerequisite for DNA synthesis induced by platelet-derived growth factor in vascular smooth muscle cells. Biochem Biophys Res Comm 196:650–658

    PubMed  CAS  Google Scholar 

  78. Herve P, Drouet L, Dosquet C et al (1990) Primary pulmonary hypertension in a patient with a familial platelet storage pool disease: role of serotonin. Am J Med 89:117–120

    PubMed  CAS  Google Scholar 

  79. Hervé P, Launay J-M, Scrobohaci M-L et al (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249–254

    PubMed  Google Scholar 

  80. Miyata M, Ito M, Sasajima T, Ohira H, Kasukawa R (2001) Effect of a serotonin receptor antagonist on interleukin-6-induced pulmonary hypertension in rats. Chest 119:554–561

    PubMed  CAS  Google Scholar 

  81. Fanburg BL, Lee SL (1997) A new role for an old molecule: serotonin as a mitogen. Am J Physiol 272:L795–L806

    PubMed  CAS  Google Scholar 

  82. Eddahibi S, Fabre V, Boni C et al (1999) Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells: relationship with the mitogenic action of serotonin. Circ Res 84:329–336

    PubMed  CAS  Google Scholar 

  83. Lee S, Wang W, Moore B, Fanburg B (1991) Dual effect of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture. Circ Res 68:1362–1368

    PubMed  CAS  Google Scholar 

  84. Pitt BR, Weng W, Steve AR, Blakely RD, Reynolds I, Davies P (1994) Serotonin increases DNA synthesis in rat proximal and distal pulmonary vascular smooth muscle cells in culture. Am J Physiol 266:L178–L186

    PubMed  CAS  Google Scholar 

  85. Eddahibi S, Humbert M, Fadel E et al (2001) Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 108:1141–1150

    PubMed  CAS  Google Scholar 

  86. MacLean MR, Sweeney G, Baird M, McCulloch KM, Houslay M, Morecroft I (1996) 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats. Br J Pharmacol 119:917–930

    PubMed  CAS  Google Scholar 

  87. Marcos E, Fadel E, Sanchez O et al (2004) Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ Res 94:1263–1270

    PubMed  CAS  Google Scholar 

  88. Lee SL, Wang WW, Fanburg BL (1997) Association of Tyr phosphorylation of GTPase-activating protein with mitogenic action of serotonin. Am J Physiol Cell Physiol 272:C223–C230

    CAS  Google Scholar 

  89. Lee S-L, Wang W-W, Fanburg BL (1998) Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Rad Biol Med 24:855–858

    PubMed  Google Scholar 

  90. Lee S-L, Wang W-W, Finlay GA, Fanburg BL (1999) Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am J Physiol Lung Cell Mol Physiol 277:L282–L291

    CAS  Google Scholar 

  91. Giaid A (1998) Nitric oxide and endothelin-1 in pulmonary hypertension. Chest 114:208S–212S

    PubMed  CAS  Google Scholar 

  92. Yanagisawa M (1994) The endothelin system. A new target for therapeutic intervention Circulation 89:1320–1322

    CAS  Google Scholar 

  93. Davie N, Haleen SJ, Upton PD et al (2002) ETA and ETB receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 165:398–405

    PubMed  Google Scholar 

  94. Giaid A, Yanagisawa M, Langleben D et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    PubMed  CAS  Google Scholar 

  95. Said SI (2006) Mediators and modulators of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 291:L547–L558

    PubMed  CAS  Google Scholar 

  96. Morinelli T, Zhang L, Newman W, Meier K (1994) Thromboxane A2/prostaglandin H2-stimulated mitogenesis of coronary artery smooth muscle cells involves activation of mitogen-activated protein kinase and S6 kinase. J Biol Chem 269:5693–5698

    PubMed  CAS  Google Scholar 

  97. Honma S, Saika M, Ohkubo S, Kurose H, Nakahata N (2006) Thromboxane A2 receptor-mediated G12/13-dependent glial morphological change. Eur J Pharmacol 545:100–108

    PubMed  CAS  Google Scholar 

  98. Barnes P, Belvisi M (1993) Nitric oxide and lung disease. Thorax 48:1034–1043

    PubMed  CAS  Google Scholar 

  99. Humbert M, Morrell NW, Archer SL et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:S13–S24

    Google Scholar 

  100. Rabinovitch M, Gamble W, Nadas A, Miettinen O, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236:H818–H827

    PubMed  CAS  Google Scholar 

  101. Meyrick B, Reid L (1979) Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. Am J Pathol 96:51–70

    PubMed  CAS  Google Scholar 

  102. Kobs R, Muvarak N, Eickhoff J, Chesler N (2008) Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 288:H1209–H1217

    Google Scholar 

  103. Stenmark K, Fagan K, Frid M (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    PubMed  CAS  Google Scholar 

  104. Pak A, Aldashev A, Welsh D (2007) The effects of hypoxia on the cells of the pulmonary vasculature. Eur Respir J 30:364–372

    PubMed  CAS  Google Scholar 

  105. Frid M, Davie N, Stenmark K (2004) Heterogeneity in hypoxia-induced pulmonary artery smooth muscle cell proliferation. Kluwer, Boston

    Google Scholar 

  106. Wohrley J, Frid M, Moiseeva E (1995) al e. Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media J Clin Invest 96:273–281

    CAS  Google Scholar 

  107. Dempsey E, Frid M, Aldashev A, Das M, Stenmark K (1997) Heterogeneity in the proliferative response of bovine pulmonary artery smooth muscle cells to mitogens and hypoxia: importance of protein kinase C. Can J Physiol Pharmacol 75:936–944

    PubMed  CAS  Google Scholar 

  108. Lannér MC, Raper M, Pratt WM, Rhoades RA (2005) Heterotrimeric G proteins and the PDGFR-β contribute to hypoxic proliferation of smooth muscle cells. Am J Respir Cell Mol Biol 33:412–419

    PubMed  Google Scholar 

  109. Mauban J, Remillard CV, Yuan JX-J (2005) Hypoxic pulmonary vasoconstriction: Role of ion channels. J Appl Physiol 98:415–420

    PubMed  CAS  Google Scholar 

  110. Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98:390–403

    PubMed  CAS  Google Scholar 

  111. Remillard CV, Yuan JX-J (2005) High altitude pulmonary hypertension: Role of K+ and Ca2+ channels. High Alt Med Biol 6:133–146

    PubMed  CAS  Google Scholar 

  112. Shimoda LA, Sylvester JT, Sham JSK (1999) Chronic hypoxia alters effects of endothelin and angiotensin on K+ currents in pulmonary arterial myocytes. Am J Physiol 277:L431–L439

    PubMed  CAS  Google Scholar 

  113. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA (2005) Chronic hypoxia inhibits KV channel gene expression in rat distal pulmonary artery. Am J Physiol Lung Cell Mol Physiol 288:L1049–L1058

    PubMed  CAS  Google Scholar 

  114. Aaronson PI, Robertson TP, Ward JPT (2002) Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 132:107–120

    PubMed  CAS  Google Scholar 

  115. Faller DV (1999) Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol 26:74–84

    PubMed  CAS  Google Scholar 

  116. Badesch D, Orton E, Zapp L et al (1989) Decreased arterial wall prostaglandin production in neonatal calves with severe chronic pulmonary hypertension. Am J Respir Cell Mol Biol 1:489–498

    PubMed  CAS  Google Scholar 

  117. Herget J, Wilhelm J, Novotná J et al (2000) A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res 49:493–501

    PubMed  CAS  Google Scholar 

  118. Le Cras TD, McMurtry IF (2001) Nitric oxide production in the hypoxic lung. Am J Physiol Lung Cell Mol Physiol 280:L575–L582

    PubMed  Google Scholar 

  119. Kourembanas S, Bernfield M (1994) Hypoxia and endothelial-smooth muscle cell interactions in the lung. Am J Respir Cell Mol Biol 11:373–374

    PubMed  CAS  Google Scholar 

  120. Chen YF, Oparil S (2000) Endothelin and pulmonary hypertension. J Cardiovasc Pharmacol 35:S49–S53

    PubMed  CAS  Google Scholar 

  121. Stiebellehner L, Frid M, Reeves J, Low R, Gnanasekharan M, Stenmark K (2003) Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities. Am J Physiol Lung Cell Mol Physiol 285:L819–L828

    PubMed  Google Scholar 

  122. Benitz W, Coulson J, Lessler D, Bernfield M (1986) Hypoxia inhibits proliferation of fetal pulmonary arterial smooth muscle cells in vitro. Pediatr Res 20:966–972

    PubMed  CAS  Google Scholar 

  123. Tamm M, Bihl M, Eickelberg O, Stulz P, Perruchoud A, Roth M (1998) Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol 19:653–661

    PubMed  CAS  Google Scholar 

  124. Cooper A, Beasley D (1999) Hypoxia stimulates proliferation and interleukin-1a production in human vascular smooth muscle cells. Am J Physiol 277:H1326–H1337

    PubMed  CAS  Google Scholar 

  125. Ambalavanan N, Mariani G, Bulger A, Philips J III (1999) Role of nitric oxide in regulating neonatal porcine pulmonary artery smooth muscle cell proliferation. Biol Neonate 76:291–300

    PubMed  CAS  Google Scholar 

  126. Stotz WH, Li D, Johns RA (2004) Exogenous nitric oxide upregulates p21waf1/cip1 in pulmonary microvascular smooth muscle cells. J Vasc Res 41:211–219

    PubMed  CAS  Google Scholar 

  127. Lu S, Wang D, Zhu M, Zhang Q, Hu Y, Pei J (2005) Inhibition of hypoxia-induced proliferation and collagen synthesis by vasonatrin peptide in cultured rat pulmonary artery smooth muscle cells. Life Sci 77:28–38

    PubMed  CAS  Google Scholar 

  128. Frank DB, Abtahi A, Yamaguchi DJ et al (2005) Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 97:496–504

    PubMed  CAS  Google Scholar 

  129. Preston IR, Hill NS, Warburton RR, Fanburg BL (2006) Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 290:L367–L374

    PubMed  CAS  Google Scholar 

  130. Schultz K, Fanburg BL, Beasley D (2006) Hypoxia and hypoxia-inducible factor-1α promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290:H2528–H2534

    PubMed  CAS  Google Scholar 

  131. Halka A, Turner N, Carter A et al (2008) The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol 17:98–102

    PubMed  CAS  Google Scholar 

  132. Sumpio B, Banes A (1988) Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J Surg Res 44:696–701

    PubMed  CAS  Google Scholar 

  133. Hipper A, Isenberg G (2000) Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch 440:19–27

    PubMed  CAS  Google Scholar 

  134. Chapman G, Durante W, Hellums J, Schafer A (2000) Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 278:H748–H754

    PubMed  CAS  Google Scholar 

  135. Mills I, Cohen C, Kamal K et al (1997) Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J Cell Physiol 170:228–234

    PubMed  CAS  Google Scholar 

  136. Wilson E, Mai Q, Sudhir K, Weiss R, Ives H (1993) Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 123:741–747

    PubMed  CAS  Google Scholar 

  137. Hu Y, Böck G, Wick G, Xu Q (1998) Activation of PDGF receptor α in vascular smooth muscle cells by mechanical stress. FASEB J 12:1135–1142

    PubMed  CAS  Google Scholar 

  138. Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278:H521–H529

    PubMed  CAS  Google Scholar 

  139. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518

    PubMed  CAS  Google Scholar 

  140. Romer L, Birukov K, Garcia J (2006) Focal adhesions: paradigm for a signaling nexus. Circ Res 98:606–616

    PubMed  CAS  Google Scholar 

  141. Torsoni A, Constancio S, Nadruz W Jr, Hanks S, Franchini K (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93:140–147

    PubMed  CAS  Google Scholar 

  142. Schlaepfer D, Mitra S, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692:77–102

    PubMed  CAS  Google Scholar 

  143. Critchley D (2000) Focal adhesions-the cytoskeletal connection. Curr Opin Cell Biol 12:133–139

    PubMed  CAS  Google Scholar 

  144. Kornberg L, Earp H, Parsons J, Schaller M, Juliano R (1992) Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 267:23439–23442

    PubMed  CAS  Google Scholar 

  145. Lehoux S, Esposito B, Merval R, Tedgui A (2005) Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111:643–649

    PubMed  CAS  Google Scholar 

  146. Schlaepfer D, Hunter T (1997) Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem 272:13189–13195

    PubMed  CAS  Google Scholar 

  147. Goldman J, Zhong L, Liu S (2003) Degradation of α-actin filaments in venous smooth muscle cells in response to mechanical stretch. Am J Physiol Heart Circ Physiol 284:H1839–H1847

    PubMed  CAS  Google Scholar 

  148. Numaguchi K, Eguchi S, Yamakawa T, Motley E, Inagami T (1999) Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res 85:5–11

    PubMed  CAS  Google Scholar 

  149. Weiser M, Majack R, Tucker A, Orton E (1995) Static tension is associated with increased smooth muscle cell DNA synthesis in rat pulmonary arteries. Am J Physiol 268:H1133–H1138

    PubMed  CAS  Google Scholar 

  150. Quinn T, Schlueter M, Soifer S, Gutierrez J (2002) Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 282:L897–L903

    PubMed  CAS  Google Scholar 

  151. Balabanian K, Foussat A, Dorfmüller P et al (2002) CX3C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 165:1419–1425

    PubMed  Google Scholar 

  152. Perros F, Dorfmüller P, Souza R et al (2007) Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 29:937–943

    PubMed  CAS  Google Scholar 

  153. Sanchez O, Marcos E, Perros F et al (2007) Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 176:1041–1047

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Tajsic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tajsic, T., Morrell, N.W. (2011). Cellular and Molecular Mechanisms of Pulmonary Vascular Smooth Muscle Cell Proliferation. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics