Skip to main content

Role of Calcium as a Second Messenger in Signaling: A Focus on Endothelium

  • 563 Accesses

Abstract

Endothelial cells line blood vessels and lymphatic vessels, and in so doing separate circulating solutes, macromolecules, and cells from the underlying tissues. In this capacity, endothelium fulfills a gatekeeper role, responding to mechanical and chemical signals in the blood and tissues to regulate the directed transport of molecules and cells. The endothelial cell barrier is established by cell–matrix interactions that connect endothelium to the basement membrane, and by cell–cell junctions that connect adjacent endothelial cells together. The strength of both the cell–matrix and the cell–cell junctions is adjusted dynamically, modulated in part by cytosolic calcium concentrations. Whereas basal cytosolic calcium concentrations are maintained at low nanomolar levels, inflammatory first messengers increase cytosolic calcium concentrations. This increase in calcium concentration disrupts cell–matrix and cell–cell adhesion, inducing interendothelial cell gaps that provide a paracellular transport pathway. Calcium channels on the cell membrane allow for calcium entry that mediates this change in cell shape. However, recent advances have identified that endothelial cells express many different calcium channels, with quite distinct cellular functions. This chapter reviews how calcium homeostasis is controlled in tissue compartments, how cells such as endothelial cells compartmentalize calcium, and how endothelial cells utilize calcium signals as a second messenger to regulate their shape.

Keywords

  • Lung microvascular endothelium
  • Endothelial cells
  • Signaling cascades
  • Vascular permeability
  • Barrier function

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-87429-6_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-87429-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98(2):159–162

    PubMed  CAS  Google Scholar 

  2. Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190

    PubMed  CAS  Google Scholar 

  3. Cioffi DL, Stevens T (2006) Regulation of endothelial cell barrier function by store-operated calcium entry. Microcirculation 13(8):709–723

    PubMed  CAS  Google Scholar 

  4. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    PubMed  CAS  Google Scholar 

  5. Trifonov DN, Trifonov VD (1982) aVDTCeHtwdMMP. Chemical elements: how they were discovered. MIR, Moscow, pp 116–117

    Google Scholar 

  6. Campbell AK (1988) Methodol surveys. Biochem Anal 19:485–486

    Google Scholar 

  7. Mooren FC, Kinne RK (1998) Cellular calcium in health and disease. Biochim Biophys Acta 1406(2):127–151

    PubMed  CAS  Google Scholar 

  8. Ringer S, Sainsbury H (1894) The action of potassium, sodium and calcium salts on Tubifex rivulorum. J Physiol 16(1–2):1–9

    PubMed  CAS  Google Scholar 

  9. Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med 25(3):176–201

    PubMed  CAS  Google Scholar 

  10. Wasserman RH, Fullmer CS (1995) Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr 125(7 Suppl):1971S–1979S

    PubMed  CAS  Google Scholar 

  11. Bronner F (1990) Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab 16(2–3):94–100

    PubMed  CAS  Google Scholar 

  12. Bronner F, Pansu D, Stein WD (1986) An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 250(5 Pt 1):G561–G569

    PubMed  CAS  Google Scholar 

  13. Wasserman RH, Fullmer CS (1989) On the molecular mechanism of intestinal calcium transport. Adv Exp Med Biol 249:45–65

    PubMed  CAS  Google Scholar 

  14. Johnson JA, Kumar R (1994) Renal and intestinal calcium transport: roles of vitamin D and vitamin D-dependent calcium binding proteins. Semin Nephrol 14(2):119–128

    PubMed  CAS  Google Scholar 

  15. Montell C, Birnbaumer L, Flockerzi V et al (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    PubMed  CAS  Google Scholar 

  16. Peng JB, Chen XZ, Berger UV et al (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274(32):22739–22746

    PubMed  CAS  Google Scholar 

  17. Hoenderop JG, van der Kemp AW, Hartog A et al (1999) Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274(13):8375–8378

    PubMed  CAS  Google Scholar 

  18. van de Graaf SF, Boullart I, Hoenderop JG, Bindels RJ (2004) Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1alpha,25-dihydroxy vitamin D3 and dietary Ca2+. J Steroid Biochem Mol Biol 89–90(1–5):303–308

    PubMed  Google Scholar 

  19. Hoenderop JG, Muller D, Suzuki M, van Os CH, Bindels RJ (2000) Epithelial calcium channel: gate-keeper of active calcium reabsorption. Curr Opin Nephrol Hypertens 9(4):335–340

    PubMed  CAS  Google Scholar 

  20. Pansu D, Duflos C, Bellaton C, Bronner F (1993) Solubility and intestinal transit time limit calcium absorption in rats. J Nutr 123(8):1396–1404

    PubMed  CAS  Google Scholar 

  21. Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393

    PubMed  CAS  Google Scholar 

  22. Sharan K, Siddiqui JA, Swarnkar G, Chattopadhyay N (2008) Role of calcium-sensing receptor in bone biology. Indian J Med Res 127(3):274–286

    PubMed  CAS  Google Scholar 

  23. Copp D (1964) The hormones of the parathyroid glands and calcium homeostasis. In: Frost H (ed) Bone biodynamics. Little, Brown, Boston, pp 441–459

    Google Scholar 

  24. Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35(3):249–255

    PubMed  CAS  Google Scholar 

  25. Copp DH (1969) Endocrine control of calcium homeostasis. J Endocrinol 43(1):137–161

    PubMed  CAS  Google Scholar 

  26. Rouse D, Suki W (1995) Renal control of extracellular calcium. Kidney Int 38:700–708

    Google Scholar 

  27. Hebert SC, Brown EM, Harris HW (1997) Role of the Ca2+-sensing receptor in divalent mineral ion homeostasis. J Exp Biol 200(Pt 2):295–302

    PubMed  CAS  Google Scholar 

  28. MacCallum W, Voegtlin C (1909) On the relation of tetany to the parathyroid glands and to calcium metabolism. J Exp Med 11:118–151

    PubMed  CAS  Google Scholar 

  29. Parfitt A, Kleerkoper M (1980) The divalent cation hemeostatic system: physiology and metabolism of calcium, phosphorus, magnesium, and bone. In: Maxwell M, Lkeeman C (eds) Clinical disorders of fluid and electrolyte metabolism. McGraw-Hill, New York

    Google Scholar 

  30. Kasai H, Petersen OH (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 17(3):95–101

    PubMed  CAS  Google Scholar 

  31. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8(3):182–193

    PubMed  CAS  Google Scholar 

  32. Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10(6):637–643

    PubMed  CAS  Google Scholar 

  33. Capozzi F, Casadei F, Luchinat C (2006) EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem 11(8):949–962

    PubMed  CAS  Google Scholar 

  34. Waltersson Y, Linse S, Brodin P, Grundstrom T (1993) Mutational effects on the cooperativity of Ca2+ binding in calmodulin. Biochemistry 32(31):7866–7871

    PubMed  CAS  Google Scholar 

  35. Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV (2008) Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. BMC Syst Biol 2:48

    PubMed  Google Scholar 

  36. Moss SE, Morgan RO (2004) The annexins. Genome Biol 5(4):219

    PubMed  Google Scholar 

  37. Mollenhauer J (1997) Annexins: what are they good for? Cell Mol Life Sci 53(6):506–507

    PubMed  CAS  Google Scholar 

  38. Hampl V, Cornfield DN, Cowan NJ, Archer SL (1995) Hypoxia potentiates nitric oxide synthesis and transiently increases cytosolic­ calcium levels in pulmonary artery endothelial cells. Eur Respir J 8(4):515–522

    PubMed  CAS  Google Scholar 

  39. Usachev YM, Marchenko SM, Sage SO (1995) Cytosolic calcium concentration in resting and stimulated endothelium of excised intact rat aorta. J Physiol 489  (Pt 2):309–317

    PubMed  CAS  Google Scholar 

  40. Hashimoto S, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J (1988) Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 107(6 Pt 2):2523–2531

    PubMed  CAS  Google Scholar 

  41. Scott BT, Simmerman HK, Collins JH, Nadal-Ginard B, Jones LR (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263(18):8958–8964

    PubMed  CAS  Google Scholar 

  42. Volpe P, Krause KH, Hashimoto S et al (1988) “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci U S A 85(4):1091–1095

    PubMed  CAS  Google Scholar 

  43. Meldolesi J, Madeddu L, Pozzan T (1990) Intracellular Ca2+ storage organelles in non-muscle cells: heterogeneity and functional assignment. Biochim Biophys Acta 1055(2):130–140

    PubMed  CAS  Google Scholar 

  44. Docampo R, Moreno SN (1999) Acidocalcisome: a novel Ca2+ storage compartment in trypanosomatids and apicomplexan parasites. Parasitol Today 15(11):443–448

    PubMed  CAS  Google Scholar 

  45. Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279(43):44250–44257

    PubMed  CAS  Google Scholar 

  46. Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177(3):491–496

    PubMed  CAS  Google Scholar 

  47. Kornberg A (1999) Inorganic polyphosphate: a molecule of many functions. Prog Mol Subcell Biol 23:1–18

    PubMed  CAS  Google Scholar 

  48. Orallo F (1996) Regulation of cytosolic calcium levels in vascular smooth muscle. Pharmacol Ther 69(3):153–171

    PubMed  CAS  Google Scholar 

  49. Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120  (5):1147–1157

    PubMed  CAS  Google Scholar 

  50. El-Yazbi AF, Cho WJ, Schulz R, Daniel EE (2008) Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1 knockout mouse small intestine. Eur J Pharmacol 591(1–3):80–87

    PubMed  CAS  Google Scholar 

  51. Philipson KD, Nicoll DA (2000) Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 62:111–133

    PubMed  CAS  Google Scholar 

  52. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306  (5938):67–69

    PubMed  CAS  Google Scholar 

  53. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325

    PubMed  CAS  Google Scholar 

  54. Mikoshiba K (1993) Inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 14(3):86–89

    PubMed  CAS  Google Scholar 

  55. Taylor CW, da Fonseca PC, Morris EP (2004) IP3 receptors: the search for structure. Trends Biochem Sci 29(4):210–219

    PubMed  CAS  Google Scholar 

  56. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    PubMed  CAS  Google Scholar 

  57. Woodcock EA, Matkovich SJ (2005) Ins(1,4,5)P3 receptors and inositol phosphates in the heart-evolutionary artefacts or active signal transducers? Pharmacol Ther 107(2):240–251

    PubMed  CAS  Google Scholar 

  58. Chatton JY, Cao Y, Stucki JW (1998) Perturbation of myo-inositol-1,4,5-trisphosphate levels during agonist-induced Ca2+ oscillations. Biophys J 74(1):523–531

    PubMed  CAS  Google Scholar 

  59. Wang SS, Alousi AA, Thompson SH (1995) The lifetime of inositol 1,4,5-trisphosphate in single cells. J Gen Physiol 105(1):149–171

    PubMed  CAS  Google Scholar 

  60. Shears S (1992) Metabolism of inositol phosphates. Adv Second Messenger Phosphoprotein Res 2:63–92

    Google Scholar 

  61. Majerus PW, Kisseleva MV, Norris FA (1999) The role of phosphatases in inositol signaling reactions. J Biol Chem 274(16):10669–10672

    PubMed  CAS  Google Scholar 

  62. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102(5):1426–1446

    PubMed  CAS  Google Scholar 

  63. Hamada H, Damron DS, Hong SJ, Van Wagoner DR, Murray PA (1997) Phenylephrine-induced Ca2+ oscillations in canine pulmonary artery smooth muscle cells. Circ Res 81(5):812–823

    PubMed  CAS  Google Scholar 

  64. Jiang LH, Rassendren F, Surprenant A, North RA (2000) Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J Biol Chem 275(44):34190–34196

    PubMed  CAS  Google Scholar 

  65. Serysheva II, Bare DJ, Ludtke SJ, Kettlun CS, Chiu W, Mignery GA (2003) Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by electron cryomicroscopy. J Biol Chem 278  (24):21319–21322

    PubMed  CAS  Google Scholar 

  66. Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H (2006) Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 98(1):1–14

    PubMed  CAS  Google Scholar 

  67. Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252  (5004):443–446

    PubMed  CAS  Google Scholar 

  68. Bezprozvanny I, Ehrlich BE (1995) The inositol 1,4,5-trisphosphate (InsP3) receptor. J Membr Biol 145(3):205–216

    PubMed  CAS  Google Scholar 

  69. Parker I, Ivorra I (1990) Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+. Proc Natl Acad Sci U S A 87(1):260–264

    PubMed  CAS  Google Scholar 

  70. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95  (6):1103–1122

    PubMed  CAS  Google Scholar 

  71. Rosenberg PB (2009) Calcium entry in skeletal muscle. J Physiol 587(Pt 13):3149–3151

    PubMed  CAS  Google Scholar 

  72. Beard NA, Wei L, Dulhunty AF (2009) Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. Eur Biophys J 39(1):27–36

    PubMed  CAS  Google Scholar 

  73. Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M (2009) Emerging roles of NAD+ and its metabolites in cell signaling. Sci Signal 2(57):mr1

    PubMed  Google Scholar 

  74. Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97(11):1164–1172

    PubMed  CAS  Google Scholar 

  75. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    PubMed  CAS  Google Scholar 

  76. Dutta D (2000) Mechanism of store-operated calcium entry. J Biosci 25(4):397–404

    PubMed  CAS  Google Scholar 

  77. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224  (5216):285–287

    PubMed  CAS  Google Scholar 

  78. Vaca L, Kunze DL (1994) Depletion of intracellular Ca2+ stores activates a Ca2+-selective channel in vascular endothelium. Am J Physiol 267  (4 Pt 1):C920–C925

    PubMed  CAS  Google Scholar 

  79. Montell C (2005) Drosophila TRP channels. Pflugers Arch 451(1):19–28

    PubMed  CAS  Google Scholar 

  80. Montell C (2008) In search of the holy grail for Drosophila TRP. Neuron 58  (6):825–827

    PubMed  CAS  Google Scholar 

  81. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38  (3–4):233–252

    PubMed  CAS  Google Scholar 

  82. Groschner K, Hingel S, Lintschinger B et al (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437(1–2):101–106

    PubMed  CAS  Google Scholar 

  83. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278(13):11337–11343

    PubMed  CAS  Google Scholar 

  84. Liu X, Wang W, Singh BB et al (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275  (5):3403–3411

    PubMed  CAS  Google Scholar 

  85. Philipp S, Cavalie A, Freichel M et al (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. Embo J 15  (22):6166–6171

    PubMed  CAS  Google Scholar 

  86. Philipp S, Trost C, Warnat J et al (2000) TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275  (31):23965–23972

    PubMed  CAS  Google Scholar 

  87. Vazquez G, Lievremont JP, St JBG, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci U S A 98(20):11777–11782

    PubMed  CAS  Google Scholar 

  88. Warnat J, Philipp S, Zimmer S, Flockerzi V, Cavalie A (1999) Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J Physiol 518  (Pt 3):631–638

    PubMed  CAS  Google Scholar 

  89. Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol Cell Physiol 278  (3):C526–C536

    PubMed  CAS  Google Scholar 

  90. Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res 88  (1):84–87

    PubMed  CAS  Google Scholar 

  91. Yoshida J, Ishibashi T, Imaizumi N, Takegami T, Nishio M (2005) Capacitative Ca2+ entries and mRNA expression for TRPC1 and TRPC5 channels in human epidermoid carcinoma A431 cells. Eur J Pharmacol 510  (3):217–222

    PubMed  CAS  Google Scholar 

  92. Zitt C, Zobel A, Obukhov AG et al (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196

    PubMed  CAS  Google Scholar 

  93. Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    PubMed  CAS  Google Scholar 

  94. Wissenbach U, Philipp SE, Gross SA, Cavalie A, Flockerzi V (2007) Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell Calcium 42  (4–5):439–446

    PubMed  CAS  Google Scholar 

  95. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282(24):17548–17556

    PubMed  CAS  Google Scholar 

  96. Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalie A, Flockerzi V (2007) Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 282  (27):19375–19384

    PubMed  CAS  Google Scholar 

  97. Vig M, DeHaven WI, Bird GS et al (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9  (1):89–96

    PubMed  CAS  Google Scholar 

  98. Liao Y, Erxleben C, Abramowitz J et al (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900

    PubMed  CAS  Google Scholar 

  99. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104  (11):4682–4687

    PubMed  CAS  Google Scholar 

  100. Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 283  (19):12935–12940

    PubMed  CAS  Google Scholar 

  101. Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a copmparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 436:69–74

    Google Scholar 

  102. Wu S, Sangerman J, Li M, Brough GH, Goodman SR, Stevens T (2001) Essential control of an endothelial cell ISOC by the spectrin membrane skeleton. J Cell Biol 154  (6):1225–1233

    PubMed  CAS  Google Scholar 

  103. Brough GH, Wu S, Cioffi D et al (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. Faseb J 15(10):1727–1738

    PubMed  CAS  Google Scholar 

  104. Freichel M, Suh SH, Pfeifer A et al (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3(2):121–127

    PubMed  CAS  Google Scholar 

  105. Sheetz MP (1983) Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol 20  (3):175–188

    PubMed  CAS  Google Scholar 

  106. Cohen CM (1983) The molecular organization of the red cell membrane skeleton. Semin Hematol 20  (3):141–158

    PubMed  CAS  Google Scholar 

  107. Leto TL, Pratt BM, Madri JA (1986) Mechanisms of cytoskeletal regulation: modulation of aortic endothelial cell protein band 4.1 by the extracellular matrix. J Cell Physiol 127(3):423–431

    PubMed  CAS  Google Scholar 

  108. Sheetz MP, Painter RG, Singer SJ (1976) Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells. Biochemistry 15  (20):4486–4492

    PubMed  CAS  Google Scholar 

  109. Goodman SR, Casoria LA, Coleman DB, Zagon IS (1984) Identification and location of brain protein 4.1. Science 224 (4656):1433–1436

    PubMed  CAS  Google Scholar 

  110. Heltianu C, Bogdan I, Constantinescu E, Simionescu M (1986) Endothelial cells express a spectrin-like cytoskeletal protein. Circ Res 58  (4):605–610

    PubMed  CAS  Google Scholar 

  111. Constantinescu E, Heltianu C, Simionescu M (1986) Immunological detection of an analogue of the erythroid protein 4.1 in endothelial cells. Cell Biol Int Rep 10  (11):861–868

    PubMed  CAS  Google Scholar 

  112. Ketis NV, Hoover RL, Karnovsky MJ (1986) Isolation of bovine aortic endothelial cell plasma membranes: identification of membrane-associated cytoskeletal proteins. J Cell Physiol 128  (2):162–170

    PubMed  CAS  Google Scholar 

  113. Clark MB, Ma Y, Bloom ML et al (1994) Brain alpha erythroid spectrin: identification, compartmentalization, and beta spectrin associations. Brain Res 663  (2):223–236

    PubMed  CAS  Google Scholar 

  114. Brenner SL, Korn ED (1979) Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem 254  (17):8620–8627

    PubMed  CAS  Google Scholar 

  115. Bennett V, Gilligan DM (1993) The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol 9:27–66

    PubMed  CAS  Google Scholar 

  116. Holda JR, Blatter LA (1997) Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett 403  (2):191–196

    PubMed  CAS  Google Scholar 

  117. Norwood N, Moore TM, Dean DA, Bhattacharjee R, Li M, Stevens T (2000) Store-operated calcium entry and increased endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 279 (5):L815–L824

    PubMed  CAS  Google Scholar 

  118. Rosado JA, Graves D, Sage SO (2000) Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 351(Pt 2):429–437

    PubMed  CAS  Google Scholar 

  119. Cioffi DL, Wu S, Stevens T (2003) On the endothelial cell ISOC. Cell Calcium 33  (5–6):323–336

    PubMed  CAS  Google Scholar 

  120. Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2(6):387–396

    PubMed  CAS  Google Scholar 

  121. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286 (2):C195–C205

    PubMed  CAS  Google Scholar 

  122. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82  (3):769–824

    PubMed  CAS  Google Scholar 

  123. Wu S, Moore TM, Brough GH et al (2000) Cyclic nucleotide-gated channels mediate membrane depolarization following activation of store-operated calcium entry in endothelial cells. J Biol Chem 275(25):18887–18896

    PubMed  CAS  Google Scholar 

  124. Hirata S, Enoki T, Kitamura R, Vinh VH, Nakamura K, Mori K (1998) Effects of isoflurane on receptor-operated Ca2+ channels in rat aortic smooth muscle. Br J Anaesth 81(4):578–583

    PubMed  CAS  Google Scholar 

  125. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci U S A 87(7):2466–2470

    PubMed  CAS  Google Scholar 

  126. Zhou C, Wu S (2006) T-type calcium channels in pulmonary ­vascular endothelium. Microcirculation 13(8):645–656

    PubMed  CAS  Google Scholar 

  127. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81(4):1415–1459

    PubMed  CAS  Google Scholar 

  128. Townsley MI, King JA, Alvarez DF (2006) Ca2+ channels and pulmonary endothelial permeability: insights from study of intact lung and chronic pulmonary hypertension. Microcirculation 13(8):725–739

    PubMed  CAS  Google Scholar 

  129. Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99(9):988–995

    PubMed  CAS  Google Scholar 

  130. Wu S, Cioffi EA, Alvarez D et al (2005) Essential role of a Ca2+-selective, store-operated current (ISOC) in endothelial cell permeabi­lity: determinants of the vascular leak site. Circ Res 96  (8):856–863

    PubMed  CAS  Google Scholar 

  131. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100  (2):158–173

    PubMed  CAS  Google Scholar 

  132. Gebb S, Stevens T (2004) On lung endothelial cell heterogeneity. Microvasc Res 68(  1):1–12

    PubMed  CAS  Google Scholar 

  133. Stevens T (2005) Molecular and cellular determinants of lung endothelial cell heterogeneity. Chest 128  (6 Suppl):558S–564S

    PubMed  CAS  Google Scholar 

  134. Chetham PM, Babal P, Bridges JP, Moore TM, Stevens T (1999) Segmental regulation of pulmonary vascular permeability by store-operated Ca2+ entry. Am J Physiol 276  (1 Pt 1):L41–L50

    PubMed  CAS  Google Scholar 

  135. Moore TM, Brough GH, Babal P, Kelly JJ, Li M, Stevens T (1998) Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am J Physiol 275(3 Pt 1):L574–L582

    PubMed  CAS  Google Scholar 

  136. Kelly JJ, Moore TM, Babal P, Diwan AH, Stevens T, Thompson WJ (1998) Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+ and permeability. Am J Physiol 274  (5 Pt 1):L810–L819

    PubMed  CAS  Google Scholar 

  137. Wu S, Chen H, Alexeyev MF et al (2007) Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability. J Biol Chem 282  (48):34801–34808

    PubMed  CAS  Google Scholar 

  138. Lowe K, Alvarez D, King J, Stevens T (2007) Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance. J Surg Res 143  (1):70–77

    PubMed  CAS  Google Scholar 

  139. Alvarez DF, King JA, Townsley MI (2005) Resistance to store depletion-induced endothelial injury in rat lung after chronic heart failure. Am J Respir Crit Care Med 172  (9):1153–1160

    PubMed  Google Scholar 

  140. Vriens J, Owsianik G, Fisslthaler B et al (2005) Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 ­epoxygenases in vascular endothelium. Circ Res 97  (9):908–915

    PubMed  CAS  Google Scholar 

  141. Wu S, Jian MY, Xu YC et al (2009) Ca2+ entry via α1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 297(4):L650–L657

    PubMed  CAS  Google Scholar 

  142. Wu S, Haynes J Jr, Taylor JT et al (2003) Cav3.1 (α1G) T-type Ca2+ channels mediate vaso-occlusion of sickled erythrocytes in lung microcirculation. Circ Res 93(4):346–353

    PubMed  CAS  Google Scholar 

  143. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6  (6):449–461

    PubMed  CAS  Google Scholar 

  144. Tomishige M, Sako Y, Kusumi A (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142  (4):989–1000

    PubMed  CAS  Google Scholar 

  145. Li SW. Westwick J, Poll CT (2002) Receptor-operated Ca2+ influx channels in leukocytes: a therepeutic target? Trends Pharmacal Sci 23:63–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Cioffi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cioffi, D.L., Barry, C.J., Stevens, T. (2011). Role of Calcium as a Second Messenger in Signaling: A Focus on Endothelium. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)