Effects Of Proinsulin C-Peptide On Oxygen Transport, Uptake and Utilization In Insulinopenic Diabetic Subjects – A Review

  • Lina Nordquist
  • Sara Stridh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)


Exogenous C-peptide administration has beneficial effects in many of the tissues commonly affected by diabetic complications. Diabetes-induced circulatory impairments such as decreased blood flow are prevented by C-peptide, possibly via Ca2+- mediated effects on nitric oxide release. C-peptide also improves diabetes-induced erythrocyte deformability, which likely improves oxygen availability and uptake in affected tissues. Furthermore, C-peptide prevents diabetic neuropathy via improvements of endoneural blood flow and by preventing axonal swelling. In the kidney, C-peptide normalizes the diabetes-induced increase in oxygen consumption via inhibition of the Na+/K+-ATPase. Surprisingly, C-peptide has also been shown to prevent complications in patients with type II diabetes. Taken together, these results may indicate that C-peptide treatment has the potential to reduce the prevalence of diabetic complications. In this paper, the current knowledge regarding these beneficial effects of C-peptide administered to diabetic subjects will be reviewed briefly.


Nitric Oxide ATPase Activity Diabetic Neuropathy Oxygen Transport Proximal Tubular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group, N Engl J Med 329(14), 977-86 (1993).Google Scholar
  2. 2.
    J. Ditzel, and E. Standl, The problem of tissue oxygenation in diabetes mellitus, Acta Med Scand Suppl 578(59-68 (1975).PubMedGoogle Scholar
  3. 3.
    T. Jensen, E. A. Richter, B. Feldt-Rasmussen, H. Kelbaek, and T. Deckert, Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion, Br Med J (Clin Res Ed) 296(6633), 1352-4 (1988).CrossRefGoogle Scholar
  4. 4.
    J. C. Lee, and S. E. Downing, Coronary dynamics and myocardial metabolism in the diabetic newborn lamb, Am J Physiol 237(2), H118-24 (1979).PubMedGoogle Scholar
  5. 5.
    T. D. Bell, G. F. DiBona, Y. Wang, and M. W. Brands, Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis, J Am Soc Nephrol 17(8), 2184-92 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    B. L. Johansson, B. Linde, and J. Wahren, Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin-dependent) diabetic patients, Diabetologia 35(12), 1151-8 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    B. L. Johansson, J. Wahren, and J. Pernow, C-peptide increases forearm blood flow in patients with type 1 diabetes via a nitric oxide-dependent mechanism, Am J Physiol Endocrinol Metab 285(4), E864-70 (2003).PubMedGoogle Scholar
  8. 8.
    T. Forst, T. Kunt, T. Pohlmann, K. Goitom, M. Engelbach, J. Beyer, and A. Pfutzner, Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus, J Clin Invest 101(10), 2036-41 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Hansen, B. L. Johansson, J. Wahren, and H. von Bibra, C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes, Diabetes 51(10), 3077-82 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Sari, and M. K. Balci, Relationship between C peptide and chronic complications in type-2 diabetes mellitus, J Natl Med Assoc 97(8), 1113-8 (2005).PubMedGoogle Scholar
  11. 11.
    T. Traupe, P. C. Nett, B. Frank, L. Tornillo, R. Hofmann-Lehmann, L. M. Terracciano, and M. Barton, Impaired vascular function in normoglycemic mice prone to autoimmune diabetes: role of nitric oxide, Eur J Pharmacol 557(2-3), 161-7 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Thum, D. Fraccarollo, M. Schultheiss, S. Froese, P. Galuppo, J. D. Widder, D. Tsikas, G. Ertl, and J. Bauersachs, Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes, Diabetes 56(3), 666-74 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Li, L. Xu, J. C. Dunbar, C. B. Dhabuwala, and A. A. Sima, Effects of C-peptide on expression of eNOS and iNOS in human cavernosal smooth muscle cells, Urology 64(3), 622-7 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Wallerath, T. Kunt, T. Forst, E. I. Closs, R. Lehmann, T. Flohr, M. Gabriel, D. Schafer, A. Gopfert, A. Pfutzner, J. Beyer, and U. Forstermann, Stimulation of endothelial nitric oxide synthase by proinsulin Cpeptide, Nitric Oxide 9(2), 95-102 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    L. H. Young, Y. Ikeda, R. Scalia, and A. M. Lefer, C-peptide exerts cardioprotective effects in myocardial ischemia-reperfusion, Am J Physiol Heart Circ Physiol 279(4), H1453-9 (2000).PubMedGoogle Scholar
  16. 16.
    R. S. Sprague, M. L. Ellsworth, A. H. Stephenson, and A. J. Lonigro, ATP: the red blood cell link to NO and local control of the pulmonary circulation, Am J Physiol 271(6 Pt 2), H2717-22 (1996).PubMedGoogle Scholar
  17. 17.
    R. S. Sprague, J. J. Olearczyk, D. M. Spence, A. H. Stephenson, R. W. Sprung, and A. J. Lonigro, Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance, Am J Physiol Heart Circ Physiol 285(2), H693-700 (2003).PubMedGoogle Scholar
  18. 18.
    D. E. McMillan, N. G. Utterback, and J. La Puma, Reduced erythrocyte deformability in diabetes, Diabetes 27(9), 895-901 (1978).Google Scholar
  19. 19.
    D. D. De La Tour, D. Raccah, M. F. Jannot, T. Coste, C. Rougerie, and P. Vague, Erythrocyte Na/K ATPase activity and diabetes: relationship with C-peptide level, Diabetologia 41(9), 1080-4 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Kunt, S. Schneider, A. Pfutzner, K. Goitum, M. Engelbach, B. Schauf, J. Beyer, and T. Forst, The effect of human proinsulin C-peptide on erythrocyte deformability in patients with Type I diabetes mellitus, Diabetologia 42(4), 465-71 (1999).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Raccah, C. Fabreguetts, J. P. Azulay, and P. Vague, Erythrocyte Na(+)-K(+)-ATPase activity, metabolic control, and neuropathy in IDDM patients, Diabetes Care 19(6), 564-8 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Forst, D. D. De La Tour, T. Kunt, A. Pfutzner, K. Goitom, T. Pohlmann, S. Schneider, B. L. Johansson, J. Wahren, M. Lobig, M. Engelbach, J. Beyer, and P. Vague, Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+-ATPase activity in diabetes mellitus type I, Clin Sci (Lond) 98(3), 283-90 (2000).Google Scholar
  23. 23.
    A. A. Sima, W. Zhang, and G. Grunberger, Type 1 diabetic neuropathy and C-peptide, Exp Diabesity Res 5(1), 65-77 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    C. B. Kremser, N. S. Levitt, K. M. Borow, J. B. Jaspan, C. Lindbloom, K. S. Polonsky, and A. R. Leff, Oxygen uptake kinetics during exercise in diabetic neuropathy, J Appl Physiol 65(6), 2665-71 (1988).PubMedGoogle Scholar
  25. 25.
    D. A. Greene, and S. A. Lattimer, Impaired energy utilization and Na-K-ATPase in diabetic peripheral nerve, Am J Physiol 246(4 Pt 1), E311-8 (1984).PubMedGoogle Scholar
  26. 26.
    W. Zhang, M. Yorek, C. R. Pierson, Y. Murakawa, A. Breidenbach, and A. A. Sima, Human C-peptide dose dependently prevents early neuropathy in the BB/Wor-rat, Int J Exp Diabetes Res 2(3), 187-93 (2001).PubMedCrossRefGoogle Scholar
  27. 27.
    Z. G. Li, and A. A. Sima, C-peptide and central nervous system complications in diabetes, Exp Diabesity Res 5(1), 79-90 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    F. Palm, D. G. Buerk, P. O. Carlsson, P. Hansell, and P. Liss, Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation, Diabetes 54(11), 3282-7 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Shafqat, L. Juntti-Berggren, Z. Zhong, K. Ekberg, M. Kohler, P. O. Berggren, J. Johansson, J. Wahren, and H. Jornvall, Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells, Cell Mol Life Sci 59(7), 1185-9 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    N. M. Al-Rasheed, F. Meakin, E. L. Royal, A. J. Lewington, J. Brown, G. B. Willars, and N. J. Brunskill, Potent activation of multiple signalling pathways by C-peptide in opossum kidney proximal tubular cells, Diabetologia 47(6), 987-97 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    B. L. Johansson, K. Borg, E. Fernqvist-Forbes, A. Kernell, T. Odergren, and J. Wahren, Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus, Diabet Med 17(3), 181-9 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Forst, T. Kunt, A. Pfutzner, J. Beyer, and J. Wahren, New aspects on biological activity of C-peptide in IDDM patients, Exp Clin Endocrinol Diabetes 106(4), 270-6 (1998).PubMedGoogle Scholar
  33. 33.
    M. Nangaku, Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure, J Am Soc Nephrol 17(1), 17-25 (2006).PubMedCrossRefGoogle Scholar
  34. 34.
    N. A. Lassen, O. Munck, and J. H. Thaysen, Oxygen consumption and sodium reabsorption in the kidney, Acta Physiol Scand 51(371-84 (1961).PubMedGoogle Scholar
  35. 35.
    A. Korner, A. C. Eklof, G. Celsi, and A. Aperia, Increased renal metabolism in diabetes. Mechanism and functional implications, Diabetes 43(5), 629-33 (1994).PubMedCrossRefGoogle Scholar
  36. 36.
    L. Nordquist, Fasching, A., Palm, F C-peptide-Induced Reduction in Oxygen Consumption in Isolated Proximal Tubular Cells from Diabetic Rats is Inhibited by Pretreatment with Ouabain, but not L-NAME. In: International Society on Oxygen Transport to Tissue; 2007; Uppsala, Sweden; 2007.Google Scholar
  37. 37.
    E. C. Carlson, and N. J. Bjork, SEM and TEM analyses of isolated human retinal microvessel basement membranes in diabetic retinopathy, Anat Rec 226(3), 295-306 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    E. Beltramo, S. Buttiglieri, F. Pomero, A. Allione, F. D. Alu, E. Ponte, and M. Porta, A study of capillary pericyte viability on extracellular matrix produced by endothelial cells in high glucose, Diabetologia 46(3), 409-15 (2003).PubMedGoogle Scholar
  39. 39.
    S. Chakrabarti, Z. A. Khan, M. Cukiernik, W. Zhang, and A. A. Sima, C-peptide and retinal microangiopathy in diabetes, Exp Diabesity Res 5(1), 91-6 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    Z. A. Khan, M. Cukiernik, J. R. Gonder, and S. Chakrabarti, Oncofetal fibronectin in diabetic retinopathy, Invest Ophthalmol Vis Sci 45(1), 287-95 (2004).PubMedCrossRefGoogle Scholar
  41. 41.
    P. Castellani, G. Viale, A. Dorcaratto, G. Nicolo, J. Kaczmarek, G. Querze, and L. Zardi, The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis, Int J Cancer 59(5), 612-8 (1994).PubMedCrossRefGoogle Scholar
  42. 42.
    T. V. Karelina, and A. Z. Eisen, Interstitial collagenase and the ED-B oncofetal domain of fibronectin are markers of angiogenesis in human skin tumors, Cancer Detect Prev 22(5), 438-44 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lina Nordquist
    • 1
  • Sara Stridh
    • 1
  1. 1.Department of Medical Cell BiologyUppsala University, BMC, PO 571751 23 UppsalaSweden

Personalised recommendations