Skip to main content

Steady State Redox Levels in Cytochrome Oxidase: Relevance for in Vivo Near Infrared Spectroscopy (Nirs)

  • Conference paper
Oxygen Transport to Tissue XXX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 645))

Abstract

In the visible/NIR (600 – 900 nm) three different redox centres are potentially detectable in vivo in mitochondrial cytochrome c oxidase: haem a (605nm), the binuclear haem a 3/CuB centre (655 nm) and CuA (830 nm). In this paper we report changes in the steady state reduction of these centres following increases in the rate of electron entry into the purified enzyme complex under conditions of saturating oxygen tension. As turnover is increased all three centres becomes progressively reduced. Analysis of the steady states indicated that all three centres remained in apparent equilibrium with cytochrome c throughout the titration. The calculated redox potentials of CuA (+224 mV) and haem a (+267 mV) were consistent with previous equilibrium data. The 655 nm band was also found to be oxygen and flux sensitive. It may be a useful additional in vivo detectable chromophore. However, it titrated with an apparent redox potential of +230mV, far from its equilibrium value (+400 mV). The implications of these results for the interpretation of non invasive measurements of mitochondrial function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia, J. Biomed. Opt. 12, 024002 (2007).

    Article  PubMed  Google Scholar 

  2. G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat, J. Cereb. Blood Flow. Metab. 22, 515-519. (2002).

    Article  PubMed  Google Scholar 

  3. I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension, Physiol. Meas. 28, 199-211 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Kakihana, T. Kuniyoshi, S. Isowaki, K. Tobo, E. Nagata, N. Okayama, K. Kitahara, T. Moriyama, T. Omae, M. Kawakami, Y. Kanmura, and M. Tamura, Relationship between redox behavior of brain cytochrome oxidase and neurological prognosis, Adv. Exp. Med. Biol. 530, 413-419 (2003).

    PubMed  CAS  Google Scholar 

  5. M. Banaji, A generic model of electron transport in mitochondria, J. Theor. Biol. 243, 501-516 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. N. Oshino, T. Sugano, R. Oshino, and B. Chance, Mitochondrial function under hypoxic conditions: the steady states of cytochrome a+a3 and their relation to mitochondrial energy state, Biochim. Biophys. Acta 368, 298-310 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. D. F. Wilson, M. Erecinska, C. Drown, and I. A. Silver, The oxygen dependence of cellular energy metabolism, Arch. Biochem. Biophys. 195, 485-493 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. M. Kuboyama, F. C. Yong, and T. E. King, Studies on cytochrome oxidase VIII. Preparation and some properties of cardiac cytochrome oxidase., J. Biol. Chem. 247, 6375-6383 (1972).

    PubMed  CAS  Google Scholar 

  9. P. Nicholls, The steady state behaviour of cytochrome c oxidase in proteoliposomes, FEBS Lett. 327, 194- 198 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, Near infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics, Biochem. Soc. Trans. 22, 974-980 (1994).

    PubMed  CAS  Google Scholar 

  11. A. J. Moody and P. R. Rich, The effect of pH on redox titrations of haem a in cyanide-liganded cytochrome-c oxidase: experimental and modelling studies, Biochim. Biophys. Acta 1015, 205-215 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. P. R. Rich, I. C. West, and P. Mitchell, The location of CuA in mammalian cytochrome c oxidase, FEBS 233, 25-30 (1988).

    Article  CAS  Google Scholar 

  13. D. F. Wilson, M. Erecinska, and P. L. Dutton, Thermodynamic relationships in mitochondrial oxidative phosphorylation, Annu. Rev. Biophys. Bioeng. 3, 203-230 (1974).

    Article  PubMed  CAS  Google Scholar 

  14. E. A. Gorbikova, K. Vuorilehto, M. Wikstrom, and M. I. Verkhovsky, Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy, Biochemistry 45, 5641-5649 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. P.-E. Thörnström, P. Brzezinski, P.-O. Fredriksson, and B. G. Malmström, Cytochrome c Oxidase as an Electron-Transort-Driven Proton Pump: pH Dependence of the Reduction Levels of the Redox Centres during Turnover, Biochemistry 27, 5441-5447 (1988).

    Article  PubMed  Google Scholar 

  16. M. Brunori, A. Colosimo, G. Rainoni, M. T. Wilson, and E. Antonini, Functional intermediates of cytochrome oxidase. Role of "pulsed" oxidase in the pre-steady state and steady state reactions of the beef enzyme, J. Biol. Chem. 254, 10769-10775 (1979).

    PubMed  CAS  Google Scholar 

  17. I. Belevich, D. A. Bloch, N. Belevich, M. Wikstrom, and M. I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U S A 104, 2685-2690 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Cooper, C.E., Sharpe, M.A., Mason, M.G., Nicholls, P. (2009). Steady State Redox Levels in Cytochrome Oxidase: Relevance for in Vivo Near Infrared Spectroscopy (Nirs). In: Liss, P., Hansell, P., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology, vol 645. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85998-9_19

Download citation

Publish with us

Policies and ethics