Steady State Redox Levels in Cytochrome Oxidase: Relevance for in Vivo Near Infrared Spectroscopy (Nirs)

  • Chris E. Cooper
  • Martyn A. Sharpe
  • Maria G. Mason
  • Peter Nicholls
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)


In the visible/NIR (600 – 900 nm) three different redox centres are potentially detectable in vivo in mitochondrial cytochrome c oxidase: haem a (605nm), the binuclear haem a 3/CuB centre (655 nm) and CuA (830 nm). In this paper we report changes in the steady state reduction of these centres following increases in the rate of electron entry into the purified enzyme complex under conditions of saturating oxygen tension. As turnover is increased all three centres becomes progressively reduced. Analysis of the steady states indicated that all three centres remained in apparent equilibrium with cytochrome c throughout the titration. The calculated redox potentials of CuA (+224 mV) and haem a (+267 mV) were consistent with previous equilibrium data. The 655 nm band was also found to be oxygen and flux sensitive. It may be a useful additional in vivo detectable chromophore. However, it titrated with an apparent redox potential of +230mV, far from its equilibrium value (+400 mV). The implications of these results for the interpretation of non invasive measurements of mitochondrial function are discussed.


Redox State Cytochrome Oxidase Near Infrared Spectroscopy Redox Centre Redox Titration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia, J. Biomed. Opt. 12, 024002 (2007).PubMedCrossRefGoogle Scholar
  2. 2.
    G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat, J. Cereb. Blood Flow. Metab. 22, 515-519. (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension, Physiol. Meas. 28, 199-211 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Kakihana, T. Kuniyoshi, S. Isowaki, K. Tobo, E. Nagata, N. Okayama, K. Kitahara, T. Moriyama, T. Omae, M. Kawakami, Y. Kanmura, and M. Tamura, Relationship between redox behavior of brain cytochrome oxidase and neurological prognosis, Adv. Exp. Med. Biol. 530, 413-419 (2003).PubMedGoogle Scholar
  5. 5.
    M. Banaji, A generic model of electron transport in mitochondria, J. Theor. Biol. 243, 501-516 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Oshino, T. Sugano, R. Oshino, and B. Chance, Mitochondrial function under hypoxic conditions: the steady states of cytochrome a+a3 and their relation to mitochondrial energy state, Biochim. Biophys. Acta 368, 298-310 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    D. F. Wilson, M. Erecinska, C. Drown, and I. A. Silver, The oxygen dependence of cellular energy metabolism, Arch. Biochem. Biophys. 195, 485-493 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Kuboyama, F. C. Yong, and T. E. King, Studies on cytochrome oxidase VIII. Preparation and some properties of cardiac cytochrome oxidase., J. Biol. Chem. 247, 6375-6383 (1972).PubMedGoogle Scholar
  9. 9.
    P. Nicholls, The steady state behaviour of cytochrome c oxidase in proteoliposomes, FEBS Lett. 327, 194- 198 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, Near infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics, Biochem. Soc. Trans. 22, 974-980 (1994).PubMedGoogle Scholar
  11. 11.
    A. J. Moody and P. R. Rich, The effect of pH on redox titrations of haem a in cyanide-liganded cytochrome-c oxidase: experimental and modelling studies, Biochim. Biophys. Acta 1015, 205-215 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    P. R. Rich, I. C. West, and P. Mitchell, The location of CuA in mammalian cytochrome c oxidase, FEBS 233, 25-30 (1988).CrossRefGoogle Scholar
  13. 13.
    D. F. Wilson, M. Erecinska, and P. L. Dutton, Thermodynamic relationships in mitochondrial oxidative phosphorylation, Annu. Rev. Biophys. Bioeng. 3, 203-230 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    E. A. Gorbikova, K. Vuorilehto, M. Wikstrom, and M. I. Verkhovsky, Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy, Biochemistry 45, 5641-5649 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    P.-E. Thörnström, P. Brzezinski, P.-O. Fredriksson, and B. G. Malmström, Cytochrome c Oxidase as an Electron-Transort-Driven Proton Pump: pH Dependence of the Reduction Levels of the Redox Centres during Turnover, Biochemistry 27, 5441-5447 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Brunori, A. Colosimo, G. Rainoni, M. T. Wilson, and E. Antonini, Functional intermediates of cytochrome oxidase. Role of "pulsed" oxidase in the pre-steady state and steady state reactions of the beef enzyme, J. Biol. Chem. 254, 10769-10775 (1979).PubMedGoogle Scholar
  17. 17.
    I. Belevich, D. A. Bloch, N. Belevich, M. Wikstrom, and M. I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U S A 104, 2685-2690 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chris E. Cooper
    • 1
  • Martyn A. Sharpe
    • 2
  • Maria G. Mason
    • 1
  • Peter Nicholls
    • 1
  1. 1.Department of Biological SciencesUniversity of Essex Wivenhoe ParkColchester EssexUK
  2. 2.Biochemistry and Molecular Biology DepartmentMichigan State UniversityEast LansingUSA

Personalised recommendations