Abstract
Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user. In this introductory chapter we briefly discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent and structured way, the chapters included in this handbook and to help the reader navigate the extremely rich and detailed content that the handbook offers.
Keywords
- Recommender System
- Recommendation Algorithm
- Recommendation List
- Recommendation Process
- Mender System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)
Adomavicius, G., Tuzhilin, A.: Personalization technologies: a process-oriented perspective. Commun. ACM 48(10), 83–90 (2005)
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
Ahn, H., Kim, K.J., Han, I.: Mobile advertisement recommender system using collaborative filtering: Mar-cf. In: Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, pp. 709–715 (2006)
Aï meur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Alambic : a privacy-preserving recommender system for electronic commerce. Int. J. Inf. Sec. 7(5), 307–334 (2008)
Aimeur, E., Vézeau, M.: Short-term profiling for a case-based reasoning recommendation system. In: R.L. de Mántaras, E. Plaza (eds.)Machine Learning: 2000, 11th European Conference on Machine Learning, pp. 23–30. Springer (2000)
Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: Intelligent Techniques for Web Personalization, pp. 1–36. Springer (2005)
Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Professional 11(4), 38–44 (2009)
Averjanova, O., Ricci, F., Nguyen, Q.N.: Map-based interaction with a conversational mobile recommender system. In: The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2008. UBICOMM ’08, pp. 212–218 (2008)
Baccigalupo, C., Plaza, E.: Case-based sequential ordering of songs for playlist recommendation. In: T. Roth-Berghofer, M.H. Göker, H.A. Güvenir (eds.)ECCBR, Lecture Notes in Computer Science, vol. 4106, pp. 286–300. Springer (2006)
Bailey, R.A.: Design of comparative experiments. Cambridge University Press Cambridge (2008)
Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Communication of ACM 40(3), 66–72 (1997)
Bellotti, V., Begole, J.B., hsin Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T.H., Newman, M.W., Partridge, K., Price, B., Rasmussen, P., Roberts, M., Schiano, D.J., Walen30 Francesco Ricci, Lior Rokach and Bracha Shapira dowski, A.: Activity-based serendipitous recommendations with the magitti mobile leisure guide. In: M. Czerwinski, A.M. Lund, D.S. Tan (eds.)CHI, pp. 1157–1166. ACM (2008)
Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisels, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: K. Wegrzyn-Wolska, P.S. Szczepaniak (eds.)AWIC, Advances in Soft Computing, vol. 43, pp. 47–55. Springer (2007)
Berkovsky, S.: Mediation of User Models: for Enhanced Personalization in Recommender Systems. VDM Verlag (2009)
Berkovsky, S., Borisov, N., Eytani, Y., Kuflik, T., Ricci, F.: Examining users’ attitude towards privacy preserving collaborative filtering. In: International Workshop on Data Mining for User Modeling, at User Modeling 2007, 11th International Conference, UM 2007, Corfu, Greece, June 25, 2007, Proceedings (2007)
Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 9–16. ACM Press, New York, NY, USA (2007)
Berkovsky, S., Kuflik, T., Ricci, F.: Cross-technique mediation of user models. In: Proceedings of International Conference on Adaptive Hypermedia and AdaptiveWeb-Based Systems [AH2006], pp. 21–30. Dublin (2006)
Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008)
Berkovsky, S., Kuflik, T., Ricci, F.: Cross-representation mediation of user models. User Modeling and User-Adapted Interaction 19(1-2), 35–63 (2009)
Billsus, D., Pazzani, M.: Learning probabilistic user models. In: UM97 Workshop on Machine Learning for User Modeling (1997). URL http://www.dfki.de/~bauer/um-ws/
Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. The Knowledge Engineering review 20(3), 315–320 (2006)
Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User- Adapted Interaction 6(2-3), 87–129 (1996)
Bulander, R., Decker, M., Schiefer, G., Kolmel, B.: Comparison of different approaches for mobile advertising. Mobile Commerce and Services, 2005. WMCS ’05. The Second IEEE International Workshop on pp. 174–182 (2005)
Burke, R.: Hybrid web recommender systems. In: The AdaptiveWeb, pp. 377–408. Springer Berlin / Heidelberg (2007)
Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, pp. 45–57 (2002)
Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: Proceedings of the 2003 International Conference on Intelligent User Interfaces, January 12-15, 2003, Miami, FL, USA, pp. 12–18 (2003)
Cheng, Z., Hurley, N.: Effective diverse and obfuscated attacks on model-based recommender systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 141–148. ACM, New York, NY, USA (2009)
Church, K., Smyth, B., Cotter, P., Bradley, K.: Mobile information access: A study of emerging search behavior on the mobile internet. ACM Trans. Web 1(1), 4 (2007)
Cosley, D., Lam, S.K., Albert, I., Konstant, J.A., Riedl, J.: Is seeing believing? how recommender system interfaces affect users’ opinions. In: In Proceedings of the CHI 2003 Conference on Human factors in Computing Systems. Fort Lauderdale, FL (2003)
Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible repairs for inconsistent requirements. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pp. 791–796. Pasadena, California, USA (2009)
Fisher, G.: User modeling in human-computer interaction. User Modeling and User-Adapted Interaction 11, 65–86 (2001)
George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering. In: Proceedings of the 5th IEEE Conference on Data Mining (ICDM), pp. 625–628. IEEE Computer Society, Los Alamitos, CA, USA (2005)1 Introduction to Recommender Systems Handbook 31
Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Trust Management, 4th International Conference, iTrust 2006, Pisa, Italy, May 16-19, 2006, Proceedings, pp. 93–104 (2006)
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)
Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: GROUP ’07: Proceedings of the 2007 international ACM conference on Supporting group work, pp. 127–136. ACM, New York, NY, USA (2007)
Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 53–60. ACM, New York, NY, USA (2009)
Han, P., Xie, B., Yang, F., Sheng, R.: A scalable p2p recommender system based on distributed collaborative filtering. Expert systems with applications (2004)
Hayes, C., Cunningham, P.: Smartradio-community based music radio. Knowledge Based Systems 14(3-4), 197–201 (2001)
He, L., Zhang, J., Zhuo, L., Shen, L.: Construction of user preference profile in a personalized image retrieval. In: Neural Networks and Signal Processing, 2008 International Conference on, pp. 434–439 (2008)
Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo - the general user model ontology. In: User Modeling 2005, 10th International Conference, UM 2005, Edinburgh, Scotland, UK, July 24-29, 2005, Proceedings, pp. 428– 432 (2005)
Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: In proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transaction on Information Systems 22(1), 5–53 (2004)
Horozov, T., Narasimhan, N., Vasudevan, V.: Using location for personalized POI recommendations in mobile environments. In: Proc. Int’l Sym. Applications on Internet, pp. 124–129. EEE Computer Society (2006)
Hurley, N., Cheng, Z., Zhang, M.: Statistical attack detection. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 149–156. ACM, New York, NY, USA (2009)
Hwang, C.S., Kuo, N., Yu, P.: Representative-based diversity retrieval. In: Innovative Computing Information and Control, 2008. ICICIC ’08. 3rd International Conference on, pp. 155–155 (2008)
Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: 3rd International IEEE Conference on Intelligent Systems, pp. 355–360 (2006)
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems An Introduction. Cambridge University Press (2010)
Jessenitschnig, M., Zanker, M.: A generic user modeling component for hybrid recommendation strategies. E-Commerce Technology, IEEE International Conference on 0, 337–344 (2009). DOI http://doi.ieeecomputersociety.org/10.1109/CEC.2009.83
Kay, J.: Scrutable adaptation: Because we can and must. In: Adaptive Hypermedia and AdaptiveWeb-Based Systems, 4th International Conference, AH 2006, Dublin, Ireland, June 21-23, 2006, Proceedings, pp. 11–19 (2006)
Kim, C.Y., Lee, J.K., Cho, Y.H., Kim, D.H.: Viscors: A visual-content recommender for the mobile web. IEEE Intelligent Systems 19(6), 32–39 (2004)
Kobsa, A.: Generic user modeling systems. In: P. Brusilovsky, A. Kobsa,W. Nejdl (eds.)The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 136–154. Springer (2007)
Kobsa, A.: Privacy-enhanced personalization. In: D.Wilson, H.C. Lane (eds.)FLAIRS Conference, p. 10. AAAI Press (2008)
Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009) 32 Francesco Ricci, Lior Rokach and Bracha Shapira
Kramer, R., Modsching, M., ten Hagen, K.: Field study on methods for elicitation of preferences using a mobile digital assistant for a dynamic tour guide. In: SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pp. 997–1001. ACM Press, New York, NY, USA (2006)
Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of security and privacy issues in recommender systems. In: G. Müller (ed.)ETRICS, Lecture Notes in Computer Science, vol. 3995, pp. 14–29. Springer (2006)
Lee, H., Park, S.J.: Moners: A news recommender for the mobile web. Expert Systems with Applications 32(1), 143 – 150 (2007)
Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)
Mahmood, T., Ricci, F.: Towards learning user-adaptive state models in a conversational recommender system. In: A. Hinneburg (ed.)LWA 2007: Lernen - Wissen - Adaption, Halle, September 2007, Workshop Proceedings, pp. 373–378. Martin-Luther-University Halle-Wittenberg (2007)
Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.)Hypertext, pp. 73–82. ACM (2009)
Mahmood, T., Ricci, F., Venturini, A., Höpken,W.: Adaptive recommender systems for travel planning. In: W.H. Peter OConnor, U. Gretzel (eds.)Information and Communication Technologies in Tourism 2008, proceedings of ENTER 2008 International Conference, pp. 1–11. Springer, Innsbruck (2008)
Mahmoud, Q.: Provisioning context-aware advertisements to wireless mobile users. Multimedia and Expo, 2006 IEEE International Conference on pp. 669–672 (2006)
Manning, C.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In: Proceedings of the International Conference on Cooperative Information Systems, CoopIS, pp. 492–508 (2004)
McCarthy, K., Salam´o, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: C. Paris, C.L. Sidner (eds.)IUI, pp. 267– 269. ACM (2006)
McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: A. Aamodt, D. Bridge, K. Ashley (eds.)ICCBR 2003, the 5th International Conference on Case-Based Reasoning, pp. 276–290. Trondheim, Norway (2003)
McGinty, L., Smyth, B.: Adaptive selection: An analysis of critiquing and preference-based feedback in conversational recommender systems. International Journal of Electronic Commerce 11(2), 35–57 (2006)
McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006)
McSherry, D.: Diversity-conscious retrieval. In: S. Craw, A. Preece (eds.)Advances in Case-Based Reasoning, Proceedings of the 6th European Conference on Case Based Reasoning, ECCBR 2002, pp. 219–233. Springer Verlag, Aberdeen, Scotland (2002)
McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM, New York, NY, USA (2009)
Mirzadeh, N., Ricci, F.: Cooperative query rewriting for decision making support and recommender systems. Applied Artificial Intelligence 21, 1–38 (2007)
Montaner, M., L´opez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the internet. Artificial Intelligence Review 19(4), 285–330 (2003)
Nguyen, Q.N., Ricci, F.: Replaying live-user interactions in the off-line evaluation of critiquebased mobile recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 81–88. ACM Press, New York, NY, USA (2007)1 Introduction to Recommender Systems Handbook 33
Nguyen, Q.N., Ricci, F.: Conversational case-based recommendations exploiting a structured case model. In: Advances in Case-Based Reasoning, 9th European Conference, ECCBR 2008, Trier, Germany, September 1-4, 2008. Proceedings, pp. 400–414 (2008)
Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental collaborative filtering for highly-scalable recommendation algorithms. In: M.S. Hacid, N.V. Murray, Z.W. Ras, S. Tsumoto (eds.)ISMIS, Lecture Notes in Computer Science, vol. 3488, pp. 553–561. Springer (2005)
Park, M.H., Hong, J.H., Cho, S.B.: Location-based recommendation system using bayesian user’s preference model in mobile devices. In: J. Indulska, J. Ma, L.T. Yang, T. Ungerer, J. Cao (eds.)UIC, Lecture Notes in Computer Science, vol. 4611, pp. 1130–1139. Springer (2007)
Park, S., Kang, S., Kim, Y.K.: A channel recommendation system in mobile environment. Consumer Electronics, IEEE Transactions on 52(1), 33–39 (2006). DOI 10.1109/TCE.2006. 1605022
Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13, 393–408 (1999)
Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA, pp. 625–628 (2003)
Puerta Melguizo, M.C., Boves, L., Deshpande, A., Ramos, O.M.: A proactive recommendation system for writing: helping without disrupting. In: ECCE ’07: Proceedings of the 14th European conference on Cognitive ergonomics, pp. 89–95. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1362550.1362569
Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: When being weak is brave: Privacy in recommender systems. IEEE Internet Computing cs.CG/0105028 (2001)
Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Advances in Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, pp. 763–777 (2004)
Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recommenders: a real-user study. In: EC ’07: Proceedings of the 8th ACM conference on Electronic commerce, pp. 114–123. ACM, New York, NY, USA (2007)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings ACM Conference on Computer-Supported Cooperative Work, pp. 175–186 (1994)
Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)
Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55–57 (2002)
Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In: D.R. Fesenmaier, K.Woeber, H.Werthner (eds.)Destination Recommendation Systems: Behavioural Foundations and Applications, pp. 67–93. CABI (2006)
Ricci, F., Missier, F.D.: Supporting travel decision making through personalized recommendation. In: C.M. Karat, J.O. Blom, J. Karat (eds.)Designing Personalized User Experiences in eCommerce, pp. 231–251. Kluwer Academic Publisher (2004)
Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://doi.ieeecomputersociety.org/10.1109/MIS.2007.43
Sae-Ueng, S., Pinyapong, S., Ogino, A., Kato, T.: Personalized shopping assistance service at ubiquitous shop space. Advanced Information Networking and Applications -Workshops, 2008. AINAW 2008. 22nd International Conference on pp. 838–843 (2008). DOI 10.1109/WAINA.2008.287
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proceedings of the 5th International Conference in Computers and Information Technology (2002)34 Francesco Ricci, Lior Rokach and Bracha Shapira
Sarwar, B.M., Konstan, J.A., Riedl, J.: Distributed recommender systems for internet commerce. In: M. Khosrow-Pour (ed.)Encyclopedia of Information Science and Technology (II), pp. 907–911. Idea Group (2005)
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: The Adaptive Web, pp. 291–324. Springer Berlin / Heidelberg (2007)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)
Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: Mobhinter: epidemic collaborative filtering and self-organization in mobile ad-hoc networks. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 27–34. ACM, New York, NY, USA (2008)
Schwartz, B.: The Paradox of Choice. ECCO, New York (2004)
van Setten, M., McNee, S.M., Konstan, J.A.: Beyond personalization: the next stage of recommender systems research. In: R.S. Amant, J. Riedl, A. Jameson (eds.)IUI, p. 8. ACM (2005)
van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application compass. In: W. Nejdl, P. De Bra (eds.)Adaptive Hypermedia 2004, pp.235–244. Springer Verlag (2004)
Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of Machine Learning Research 6, 1265–1295 (2005)
Sharda, N.: Tourism Informatics: Visual Travel Recommender Systems, Social Communities, and User Interface Design. Information Science Reference (2009)
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ”word of mouth”. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI’95), pp. 210–217 (1995)
Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 157–164. ACM, New York, NY, USA (2009)
Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001)
Smyth, B., McClave, P.: Similarity vs diversity. In: Proceedings of the 4th International Conference on Case-Based Reasoning. Springer-Verlag (2001)
Swearingen, K., Sinha, R.: Beyond algorithms: An HCI perspective on recommender systems. In: J.L. Herlocker (ed.)Recommender Systems, papers from the 2001 ACM SIGIR Workshop. New Orleans, LA - USA (2001)
Taghipour, N., Kardan, A.: A hybrid web recommender system based on q-learning. In: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, pp. 1164–1168 (2008)
Taghipour, N., Kardan, A., Ghidary, S.S.: Usage-based web recommendations: a reinforcement learning approach. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, Minneapolis, MN, USA, October 19-20, 2007, pp. 113–120 (2007)
Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)
Tan, P.N.: Introduction to Data Mining. Pearson Addison Wesley, San Francisco (2006)
Thompson, C.A., Goker, M.H., Langley, P.: A personalized system for conversational recommendations. Artificial Intelligence Research 21, 393–428 (2004)
Tung, H.W., Soo, V.W.: A personalized restaurant recommender agent for mobile e-service. In: S.T. Yuan, J. Liu (eds.)Proceedings of the IEEE International Conference on e- Technology, e-Commerce and e-Service, EEE’04, pp. 259–262. IEEE Computer Society Press, Taipei, Taiwan (2004)
Van Roy, B., Yan, X.: Manipulation-resistant collaborative filtering systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 165–172. ACM, New York, NY, USA (2009)
Wang, J., Pouwelse, J.A., Lagendijk, R.L., Reinders, M.J.T.: Distributed collaborative filtering for peer-to-peer file sharing systems. In: H. Haddad (ed.)SAC, pp. 1026–1030. ACM (2006)
Wang, Y., Kobsa, A.: Performance evaluation of a privacy-enhancing framework for personalized websites. In: G.J. Houben, G.I. McCalla, F. Pianesi, M. Zancanaro (eds.)UMAP, Lecture Notes in Computer Science, vol. 5535, pp. 78–89. Springer (2009)
Wietsma, R.T.A., Ricci, F.: Product reviews in mobile decision aid systems. In: Pervasive Mobile Interaction Devices (PERMID 2005)- Mobile Devices as Pervasive User Interfaces and Interaction Devices - Workshop in conjunction with: The 3rd International Conference on Pervasive Computing (PERVASIVE 2005), May 11 2005, Munich, Germany, pp. 15–18. LMU Munich (2005)
Xie, B., Han, P., Yang, F., Shen, R.: An efficient neighbor searching scheme of distributed collaborative filtering on p2p overlay network. Database and Expert Systems Applications pp. 141–150 (2004)
Yuan, S.T., Tsao, Y.W.: A recommendation mechanism for contextualized mobile advertising. Expert Systems with Applications 24(4), 399–414 (2003)
Zhang, F.: Research on recommendation list diversity of recommender systems. Management of e-Commerce and e-Government, International Conference on pp. 72–76 (2008)
Zhang, M.: Enhancing diversity in top-n recommendation. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 397–400. ACM, New York, NY, USA (2009)
Zhou, B., Hui, S., Chang, K.: An intelligent recommender system using sequential web access patterns. In: Cybernetics and Intelligent Systems, 2004 IEEE Conference on, vol. 1, pp. 393–398 vol.1 (2004)
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation liststhrough topic diversification. In: WWW ’05: Proceedings of the 14th international conference on World Wide Web, pp. 22–32. ACM Press, New York, NY, USA (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Ricci, F., Rokach, L., Shapira, B. (2011). Introduction to Recommender Systems Handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85820-3_1
Download citation
DOI: https://doi.org/10.1007/978-0-387-85820-3_1
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-85819-7
Online ISBN: 978-0-387-85820-3
eBook Packages: Computer ScienceComputer Science (R0)