Skip to main content

Durability Aspects of Gas-Diffusion and Microporous Layers

  • Chapter
Polymer Electrolyte Fuel Cell Durability

Abstract

The polymer electrolyte fuel cell (PEFC) gas-diffusion layer (GDL) is the critical bridging component between the bipolar plate flow-field and elec-trocatalyst layer. It must participate in all mass-transport processes of a PEFC. These consist primarily of reactant transport and liquid-water handling – either excess water removal to prevent catalyst-layer flooding under humidified conditions or suppression of water removal to prevent membrane dehydration under subsaturated conditions. Other requirements of a GDL include electron collection and transport, and sharing stack compression load with the cell gaskets. To achieve this broad range of functions, state-of-the-art GDLs consist of a complex, porous composite network of graphite fibers, carbon particles, and hydrophobic fluoropolymer. They are manufactured via a series of intricate processing steps, all of which can affect the final properties of the GDL, and may contain several discrete layers in the final form. The most popular configuration is a bilayer structure with the macroporous substrate facing the flow field and a microporous layer (MPL) facing the catalyst layer. All properties of the GDL must be preserved within the PEFC operating environment to ensure required stack lifetimes and power densities. This chapter discusses GDL substrate processing variables, hydrophobic posttreatments, MPL addition, and material selection in the context of their affects on long-term PEFC performance, i.e., loss of hydrophobicity, loss of MPL material, carbon corrosion, increase in mass-transport resistance, etc. Advanced physical property characterization methods are shown and are related to durability data. Finally, considerations for improving GDL durability and extending membrane lifetime under dry operating conditions through novel GDL designs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atanassova, P. (2008) Cabot Corporation, Private communication.

    Google Scholar 

  • Bazylak, A., Sinton, D., Liu, Z.-S. and Djilali, N. (2007) Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. J. Power Sources 163, 784–792.

    Article  CAS  Google Scholar 

  • Bluemle, M.J., Gurau, V., Mann, J.A. Jr., Zawodzinski, T.A. Jr., De Castro, E.S. and Tsou, Y.-M. (2004)Characterization of transport properties in gas diffusion layers for PEMFCs. Presented at the 2004 Electrochemical Society Joint International Meeting, Honolulu, HI, Abstract No. 1932, October 3–8, 2004.

    Google Scholar 

  • Borup, R., Wood, D., Davey, J., Welch, P. and Garzon, F. (2006a) PEM fuel cell durability. Presented at the 2006 DOE Hydrogen Program Annual Merit Review, Arlington, Virginia, May 16–19, 2006.

    Google Scholar 

  • Borup, R.L., Davey, J.R., Garzon, F.H., Wood, D.L., Welch, P.M. and More, K. (2006b) PEM fuel cell durability with transportation transient operation. ECS Trans. 3 (1), 879–886.

    Article  CAS  Google Scholar 

  • Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Garland, N., Myers, D., Mukundan, R., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y. and Yasuda, K. (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951.

    Article  CAS  Google Scholar 

  • Cassie, A.B.D. (1948) Contact angles. Trans. Faraday Soc. 44 (3), 11–16.

    Google Scholar 

  • Cleghorn, S.J.C., Mayfield, D.K., Moore, D.A., Moore, J.C., Rusch, G., Sherman, T.W., Sisofo, N.T. and Beuscher, U. (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sources 158, 446–454.

    Article  CAS  Google Scholar 

  • Cubaud, T. and Fermigier, M. (2004) Advancing contact lines on chemically patterned surfaces. J. Colloid Interface Sci. 269, 171–177.

    Article  CAS  Google Scholar 

  • Dawe, H.J. and Stevens, R.F. (1960) Proceedings of the fourth conference on carbon. Pergamon Press, New York, p. 17.

    Google Scholar 

  • Dohle, H., Jung, R., Kimiaie, N., Mergel, J. and Müller, M. (2003) Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells – experiments and simulation studies. J. Power Sources 124, 371–384.

    Article  CAS  Google Scholar 

  • Eckl, R., Grinzinger, R. and Lehnert, W. (2006) Current distribution mapping in polymer electrolyte fuel cells – a finite element analysis of measurement uncertainty imposed by lateral currents. J. Power Sources 154, 171–179.

    Article  CAS  Google Scholar 

  • Fleming, G. (2000) Spectracorp, Inc., Private communication.

    Google Scholar 

  • Gasteiger, H.A., Gu, W., Makharia, R., Mathias, M.F., and Sompalli, B. (2003) Beginning-of life MEA performance–efficiency loss contributions. In: W. Vielstich, A. Lamm and H.A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. Vol. 3, Part 1, Wiley, New York, N Y, pp. 593–610.

    Google Scholar 

  • Good, R.J. and Girifalco, L.A. (1960) Estimation of surface energy of solids from contact angle data. J. Phys. Chem. 64, 561–565.

    Article  CAS  Google Scholar 

  • Gupta, K. and Jena, A. (2003) Techniques for pore structure characterization of fuel cell components containing hydrophobic and hydrophilic pores. Presented at the 2003 Fuel Cell Seminar, Miami Beach, FL, Abstract pp. 723–726, November 3–7, 2003.

    Google Scholar 

  • Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, M., Gasteiger, H. and Abbott, J. (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5, 302–308.

    Article  CAS  Google Scholar 

  • Hwang, J.J. (2006) Thermal-electrochemical modeling of a proton exchange membrane fuel cell. J. Electrochem. Soc. 153, A216–A224.

    Article  CAS  Google Scholar 

  • Ihonen, J., Mikkola, M. and Lindbergh, G. (2004) Flooding of gas diffusion backing in PEFCs. J. Electrochem. Soc. 151, A1152–A1161.

    Article  CAS  Google Scholar 

  • Jena, A.K. and Gupta, K.M. (1999) In-plane compression porometry of battery separators. J. Power Sources 80, 46–52.

    Article  CAS  Google Scholar 

  • Jena, A.K. and Gupta, K.M. (2002a) Characterization of pore structure of filtration media containing hydrophobic and hydrophilic pores. Fluid/Part. Sep. J. 14, 1–6.

    Google Scholar 

  • Jena, A.K. and Gupta, K.M. (2002b) Analyse der porendurchmesser von mehrschichtfiltermitteln. Filtrieren und Separieren 16, 13.

    Google Scholar 

  • Jordan, L.R., Shukla, A.K., Behrsing, T., Avery, N.R., Muddle, B.C. and Forsyth, M. (2000) Diffusion layer parameters influencing optimal fuel cell performance. J. Power Sources 86, 250–254.

    Article  CAS  Google Scholar 

  • Kinoshita, K. (1988) Carbon – Electrochemical and Physicochemical Properties. Wiley, New York, N Y.

    Google Scholar 

  • Kolde, J., Lane, D. and Mongan, J. (2002) Addressing the needs of the PEM fuel cell market through innovation. Presented at the 202nd Meeting of The Electrochemical Society, Salt Lake City, UT, Abstract No. 802, October 20–24, 2002.

    Google Scholar 

  • LaConti, A.B., Hamdan, M. and McDonald, R.C. (2003) Mechanisms of membrane degradation for PEMFCs. In: W. Vielstich, A. Lamm and H.A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. Vol. 3, Part 1, Wiley, New York, NY, pp. 647–662.

    Google Scholar 

  • Liu, W., Moore, D. and Murthy, M. (2004) Using AC impedance to characterize gas diffusion media in PEM fuel cells. Presented at the 2004 Electrochemical Society Joint International Meeting, Honolulu, HI, Abstract No. 1930, October 3–8, 2004.

    Google Scholar 

  • Mändle, M. and Wilde, P., SGL Carbon Group, SGL TECHNOLOGIES GmbH, Private communication, 2001.

    Google Scholar 

  • Markel, T. (2004) National Renewable Energy Laboratory, Private communication.

    Google Scholar 

  • Mathias, M.F., Roth, J., Fleming, J. and Lehnert, W. (2003) Diffusion media materials and characterization. In: W. Vielstich, A. Lamm and H.A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. Vol. 3, Part 1, Wiley, New York, NY, pp. 517–537.

    Google Scholar 

  • Meyers, J.P. and Darling, R.M. (2006) Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 153, A1432–A1442.

    Article  CAS  Google Scholar 

  • Mueller, B., Zawodzinski, T., Bauman, J., Uribe, F., Gottesfeld, S., De Castro, E. and De Marinis, M. (1999) Title. In: S. Gottesfeld and T.F. Fuller (Eds.), Proton Conducting Membrane Fuel Cells II. PV 98–27, The Electrochemical Society Proceedings Series, Pennington, NJ, pp. 1–9.

    Google Scholar 

  • Nitta, I. (2008) Inhomogeneous compression of PEMFC gas diffusion layers. PhD Dissertation, Helsinki University of Technology, Espoo, Finland

    Google Scholar 

  • Owejan, J.E., Yu, P.T. and Makharia, R. (2007) Mitigation of carbon corrosion in microporous layers in PEM fuel cells. ECS Trans. 11, 1049–1057.

    Article  CAS  Google Scholar 

  • Owens, D.K. and Wendt, R.C. (1969) Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747.

    Article  CAS  Google Scholar 

  • Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L. and Jarvi, T.D. (2005) A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273–A276.

    Article  CAS  Google Scholar 

  • Roth, J. and Wood, D.L. (1999) General Motors Corporation, Unpublished Data.

    Google Scholar 

  • Rulison, C. (2007) Augustine Scientific, LLC, Unpublished Data.

    Google Scholar 

  • Stanic, V. and Hoberecht, V. (2004) MEA failure mechanisms in PEM fuel cells operated on hydrogen and oxygen. 2004 Fuel Cell Seminar Abstracts, San Antonio, Texas, November 1–5, pp. 85–88.

    Google Scholar 

  • Wagner, F. (2008) General Motors Corporation, Private communication.

    Google Scholar 

  • Weber, A.Z. and Newman, J. (2005) Effects of microporous layers in polymer electrolyte fuel cells. J. Electrochem. Soc. 152, A677–A688.

    Article  CAS  Google Scholar 

  • Williams, M.V., Begg, E., Bonville, L., Kunz, H.R. and Fenton, J.M. (2004) Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc. 151, A1173–A1180.

    Article  CAS  Google Scholar 

  • Wood, D.L. (2007) Fundamental material degradation studies during long-term operation of hydrogen/air PEMFCs. PhD Dissertation, University of New Mexico, Albuquerque, NM.

    Google Scholar 

  • Wood, D.L. and Lehnert, W.K. (2000) General Motors Corporation, Unpublished Data.

    Google Scholar 

  • Wood, D.L., Grot, S.A. and Fly, G. (2002a) Composite gas distribution structure for fuel cell. US Patent No. 6,350,539, General Motors Corporation.

    Google Scholar 

  • Wood, D.L., Wilde, P.M., Mändle, M. and Murata, M. (2002b) Correlation of gas diffusion layer physical properties and PEMFC performance. 2002 Fuel Cell Seminar Abstracts, pp. 41–44.

    Google Scholar 

  • Wood, D., Davey, J., Garzon, F., Atanassov, P. and Borup, R. (2004a) Effects of long-term PEMFC operation on gas diffusion layer and membrane electrode assembly physical properties. Presented at the 206th Meeting of The Electrochemical Society, Honolulu, HI, Abstract No. 1881, October 3–8, 2004.

    Google Scholar 

  • Wood, D.L., Xie, J., Pacheco, S.D., Davey, J.R., Borup, R.L., Garzon, F.H. and Atanassov, P. (2004b) Durability issues of the PEMFC GDL & MEA under steady-state and drive-cycle operating conditions. Presented at the 2004 Fuel Cell Seminar, San Antonio, TX, Abstract No. 24, November 1–5, 2004.

    Google Scholar 

  • Wood, D., Davey, J., Garzon, F., Atanassov, P. and Borup, R. (2005) Characterization of gas diffusion layers and membrane electrode assemblies for long-term operation. Presented at the 208th Meeting of The Electrochemical Society, Los Angeles, CA, Abstract No. 1010, October 16–21, 2005.

    Google Scholar 

  • Wood, D., Davey, J., Atanassov, P. and Borup, R. (2006) PEMFC component characterization and its relationship to mass-transport overpotentials during long-term testing. ECS Trans. 3 (1), 753–763.

    Article  CAS  Google Scholar 

  • Zisman, W.A. (1964) Relation of equilibrium contact angle to liquid and solid constitution. ACS Adv. Chem. 43, 1–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wood, D.L., Borup, R.L. (2009). Durability Aspects of Gas-Diffusion and Microporous Layers. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_8

Download citation

Publish with us

Policies and ethics