Skip to main content

Participation of Phytochemicals in Plant Development and Growth

  • Chapter
  • First Online:

Abstract

Phytochemicals, also known as natural products and specialized compounds, display well known functions in plants providing varying levels of protection to biotic and abiotic stress conditions. The biosynthesis of phytochemicals is tightly spatio-temporally regulated, often restricted to specialized cells, yet their transport within plants allow them to interact with, and modulate, other signalling networks. In this chapter, we describe how phytochemicals participate in plant development and growth, further blurring the boundaries between primary and secondary metabolism, and between hormones and phytochemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

     The xenohormesis theory assumes that longevity provides an evolutionary advantage, yet the consequences of mild stress on reproductive output, which is under strong selective constrains, remains unknown

References

  1. Wink, M. (1999) Introduction. In Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology (Wink, M., ed), 1–16, CRC Press LLC, Boca Raton, FL

    Google Scholar 

  2. Hammerschmidt, R. (1999) PHYTOALEXINS: What have we learned after 60 years? Annu Rev Phytopathol37, 285–306

    Article  PubMed  CAS  Google Scholar 

  3. Curir, P. et al (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. Sp dianthi pathosystem. J. Phytobiol153, 65–67

    CAS  Google Scholar 

  4. Bieza, K., and Lois, R. (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol126, 1105–1115

    Article  PubMed  CAS  Google Scholar 

  5. Seigler, D., and Price, P.W. (1976) Secondary compounds in plants: primary functions. Am Nat110, 101–105

    Article  CAS  Google Scholar 

  6. Aharoni, A. et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell15, 2866–2884

    Article  PubMed  CAS  Google Scholar 

  7. Brown, P.D. et al (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry62, 471–481

    Article  PubMed  CAS  Google Scholar 

  8. Lepiniec, L. et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol57, 405–430

    Article  PubMed  CAS  Google Scholar 

  9. Halkier, B.A., and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol57, 303–333

    Article  PubMed  CAS  Google Scholar 

  10. Amme, S. et al (2005) A proteome approach defines protective functions of tobacco leaf trichomes. Proteomicss 5, 2508–2518

    Article  PubMed  CAS  Google Scholar 

  11. Wienkoop, S. et al (2004) Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry65, 1641–1649

    Article  PubMed  CAS  Google Scholar 

  12. Bird, D.A., et al. (2003) A tale of three cell types: Alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell15, 2626–2635

    Article  PubMed  CAS  Google Scholar 

  13. Weid, M. et al (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA101, 13957–13962

    Article  PubMed  CAS  Google Scholar 

  14. Chalker-Scott, L. (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol70, 1–9

    Article  CAS  Google Scholar 

  15. Winkel-Shirley, B. (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol5, 218–223

    Article  PubMed  CAS  Google Scholar 

  16. Gould, K.S. (2004) Nature’s Swiss army knife: the diverse protective roles of Anthocyanins in leaves. J Biomed Biotechnol2004, 314–320

    Article  PubMed  Google Scholar 

  17. Debeaujon, I. et al (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell15, 2514–2531

    Article  PubMed  CAS  Google Scholar 

  18. Pourcel, L. et al (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci12, 29–36

    Article  PubMed  CAS  Google Scholar 

  19. Grubb, C.D., and Abel, S. (2006) Glucosinolate metabolism and its control. Trends Plant Sci11, 89–100

    Article  PubMed  CAS  Google Scholar 

  20. Kiss, J.Z. et al (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant97, 237–244

    Article  PubMed  CAS  Google Scholar 

  21. Taylor, L.P., and Grotewold, E. (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol8, 317–323

    Article  PubMed  CAS  Google Scholar 

  22. Taylor, L.P., and Hepler, P.K. (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol48, 461–491

    Article  PubMed  CAS  Google Scholar 

  23. Guyon, V. et al (2004) Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant J39, 643–654

    Article  PubMed  CAS  Google Scholar 

  24. Shirley, B.W. et al (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J.8, 659–671

    Article  PubMed  CAS  Google Scholar 

  25. Kitamura, S. et al (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J37, 104–114

    Article  PubMed  CAS  Google Scholar 

  26. Debeaujon, I. et al (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell13, 853–871

    Article  PubMed  CAS  Google Scholar 

  27. Hsieh, K., and Huang, A.H. (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell19, 582–596

    Article  PubMed  CAS  Google Scholar 

  28. Mo, Y.Y. et al (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA89, 7213–7217

    Article  PubMed  CAS  Google Scholar 

  29. Blakeslee, J.J. et al (2005) Auxin transport. Curr Opin Plant Biol8, 494–500

    Article  PubMed  CAS  Google Scholar 

  30. Zazimalova, E. et al (2007) Polar transport of the plant hormone auxin - the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci64, 1621–1637

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, A. et al (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta211, 315–324

    Article  PubMed  CAS  Google Scholar 

  32. Buer, C.S., and Muday, G.K. (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell16, 1191–1205

    Article  PubMed  CAS  Google Scholar 

  33. Buer, C.S. et al (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol140, 1384–1396

    Article  PubMed  CAS  Google Scholar 

  34. Sheahan, J.J., and Rechnitz, G.A. (1992) Flavonoid-specific staining of Arabidopsis thaliana. Biotechniques13, 880–883

    PubMed  CAS  Google Scholar 

  35. Mueller, L.A. et al (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol.123, 1561–1570

    Article  PubMed  CAS  Google Scholar 

  36. Bennett, T. et al (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology16, 553–563

    Article  PubMed  CAS  Google Scholar 

  37. Kobayashi, H. et al (2004) Flavanoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol51, 335–347

    Article  PubMed  CAS  Google Scholar 

  38. Wasson, A.P. et al (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell18, 1617–1629

    Article  PubMed  CAS  Google Scholar 

  39. Subramanian, S. et al (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci12, 282–285

    Article  PubMed  CAS  Google Scholar 

  40. Debeaujon, I. et al (2007) Seed coat development and dormancy. In Seed development, dormancy and germination (Bradford, K. and Nonogaki, H., (editors) Oxford, UK Blackwell Publishing), 25–49

    Google Scholar 

  41. Debeaujon, I. et al (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol122, 403–413

    Article  PubMed  CAS  Google Scholar 

  42. Mares, D. et al (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet111, 1357–1364

    Article  PubMed  CAS  Google Scholar 

  43. Besseau, S. et al (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell19, 148–162

    Article  PubMed  CAS  Google Scholar 

  44. Bishopp, A. et al (2006) Signs of change: hormone receptors that regulate plant development. Development133, 1857–1869

    Article  PubMed  CAS  Google Scholar 

  45. Nugroho, L.H., and Verpoorte, R. (2002) Secondary metabolism in tobacco. Plant Cell Tissue Organ Cult68, 105–125

    Article  CAS  Google Scholar 

  46. Siritunga, D. et al (2004) Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotech J2, 37–43

    Article  CAS  Google Scholar 

  47. Inderjit, and Duke, S.O. (2003) Ecophysiological aspects of allelopathy. Planta217, 529–539

    Article  PubMed  CAS  Google Scholar 

  48. Weir, T.L. et al (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol7, 472–479

    Article  PubMed  CAS  Google Scholar 

  49. Bais, H.P. et al (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science301, 1377–1380

    Article  PubMed  CAS  Google Scholar 

  50. Blair, A.C. et al (2006) A lack of evidence for an ecological role of the putative allelochemical (+/-)-catechin in spotted knapweed invasion success. J Chem Ecol32, 2327–2331

    Article  PubMed  CAS  Google Scholar 

  51. Niemeyer, H.M. (1988) Hydroxamic acids (4-Hydroxy-1,4-Benzoxazin-3-Ones), defense chemicals in the Gramineae. Phytochemistry27, 3349–3358

    Article  CAS  Google Scholar 

  52. Hejl, A.M., and Koster, K.L. (2004) The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J Chem Ecology30, 2181–2191

    Article  CAS  Google Scholar 

  53. Marvier, M.A. (1996) Parasitic plant-host interactions: plant performance and indirect effects on parasite-feeding herbivores. Ecology77, 1398–1409

    Article  Google Scholar 

  54. Anderson, R.M. et al (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature423, 181–185

    Article  PubMed  CAS  Google Scholar 

  55. Haigis, M.C., and Guarente, L.P. (2006) Mammalian sirtuins - emerging roles in physiology, aging, and calorie restriction. Genes Dev20, 2913–2921

    Article  PubMed  CAS  Google Scholar 

  56. Howitz, K.T., et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature425, 191–196

    Article  PubMed  CAS  Google Scholar 

  57. Lamming, D.W. et al (2004) Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microb53, 1003–1009

    Article  CAS  Google Scholar 

  58. Howitz, K.T., and Sinclair, D.A. (2008) Xenohormesis: Sensing the chemical cues of other species. Cell133, 387–391

    Article  PubMed  CAS  Google Scholar 

  59. Yun, A.J., and Doux, J.D. (2007) Unhappy meal: how our need to detect stress may have shaped our preferences for taste. Medical Hypotheses69, 746–751

    Article  PubMed  Google Scholar 

  60. Schultz, J.C. (2002) Shared signals and the potential for phylogenetic espionage between plants and animals. Int Comp Biology42, 454–462

    Article  CAS  Google Scholar 

  61. Alpi, A. et al (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci12, 135–136

    Article  PubMed  CAS  Google Scholar 

  62. Brenner, E.D. et al (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci11, 413–419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Grotewold .

Editor information

Editors and Affiliations

Glossary

Phytohormones

Phytohormones are substances that, at low concentration, function to coordinate plant growth and development. The compounds that have been considered as plant hormones include indole-3-acetic acid (auxin), cytokinins, gibberellins (GA), ethylene and abscisic acid (ABA). In addition, brassinosteroids, jasmonic acid (JA) and salicylic acid (SA) have been shown to display important growth regulating activities and are also considered to function as phytohormones.

Xenohormesis

Interspecies communication of stress signals. This term as been proposed by Howitz and Sinclair [56] to explain the ability of animals and fungi to “sense” and being activated by molecules that are not produced in these organisms, such as phytochemicals.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pourcel, L., Grotewold, E. (2009). Participation of Phytochemicals in Plant Development and Growth. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_12

Download citation

Publish with us

Policies and ethics