Skip to main content

Frequency Response Characteristics and Dynamic Performance

  • Chapter
  • First Online:
Robust Power System Frequency Control

Part of the book series: Power Electronics and Power Systems ((PEPS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson P. M. Mirheydar, M. 1990.A low-order system frequency response model, IEEE Trans. Power Syst., 5, (3)720–729,

    Article  Google Scholar 

  2. Nagsarkar T. K. Sukhija, M. S. 2007.Power System Analysis. Oxford University Press, New Delhi:

    Google Scholar 

  3. Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust decentralized load–frequency control using an iterative linear matrix inequalities algorithm, IEE Proc. Gener. Transm. Distrib., 150, (3)347–354,

    Article  Google Scholar 

  4. IEEE System Dynamics Performance Committee Panel Session, Frequency control requirement, trends and challenges in new utility environment, Proc. IEEE PES Winter Meeting, New York, NY, 1999.

    Google Scholar 

  5. CIGRE SCTF 38.02.14, Analysis and modelling needs of power systems under major frequency disturbances, CIGRE Technical Brochure, No. 148, 1999.

    Google Scholar 

  6. H. Bevrani, Decentralized Robust Load–Frequency Control Synthesis in Restructured Power Systems. PhD dissertation, Osaka University, Japan, 2004.

    Google Scholar 

  7. Chritie R. D. Bose, A. 1996.Load frequency control issues in power system operation after deregulation, IEEE Trans. Power Syst., 11, (3)1191–1200,

    Article  Google Scholar 

  8. Delfino, B. Fornari F. Massucco, S. 2002.Load-frequency control and inadvertent interchange evaluation in restructured power systems, IEE Proc. Gener. Transm. Distrib., 149, (5)607–614,

    Article  Google Scholar 

  9. Kumar, J. Hoe NG. K. Sheble, G. B. 1997.AGC simulator for price-based operation, Part I: A model, IEEE Trans. Power Syst., 2, (12)527–532,

    Article  Google Scholar 

  10. UCPTE Doc. UCPTE rules for the co-ordination of the accounting and the organization of the load-frequency control, 1999.

    Google Scholar 

  11. Meliopouls, A. P. S. Cokkinides G. J. Bakirtzis, A. G. 1999.Load-frequency control service in a deregulated environment, Decision Support Syst., 24, 243–250,

    Article  Google Scholar 

  12. Roffel B. deBoer, W. W. 2003.Analysis of power and frequency control requirements in view of increased decentralized production and market liberalization, Control Eng. Pract., 11, 367–375,

    Article  Google Scholar 

  13. Bevrani, H. Mitani Y. Tsuji, K. 2004.On robust load-frequency regulation in a restructured power system, IEEJ Trans. Power Energy, 124-B, (2)190–198,

    Article  Google Scholar 

  14. Donde, V. Pai M. A. Hiskens, I. A. 2001.Simulation and optimization in a AGC system after deregulation, IEEE Trans. Power Syst., 16, (3)481–489,

    Article  Google Scholar 

  15. Elgerd O. I. Fosha, C. 1970.Optimum megawatt-frequency control of multiarea electric energy systems, IEEE Trans. Power App. Syst., PAS-89, (4)556–563,

    Article  Google Scholar 

  16. Fosha C. Elgerd, O. I. 1970.The megawatt-frequency control problem: A new approach via optimal control, IEEE Trans. Power App. Syst., 89, (4)563–577,

    Article  Google Scholar 

  17. Kumar, J. Hoe NG. K. Sheble, G. B. 1997.AGC simulator for price-based operation, Part II: Case study results, IEEE Trans. Power Syst., 2, (12)533–538,

    Article  Google Scholar 

  18. Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust decentralized AGC in a restructured power system, Energy Convers. Manage., 45, 2297–2312,

    Article  Google Scholar 

  19. Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust AGC: Traditional structure versus restructured scheme, IEEJ Trans. Power Energy, 124-B, (5)751–761,

    Article  Google Scholar 

  20. Bevrani, H. Mitani, Y. Tsuji K. Bevrani, H. 2005.Bilateral-based robust load-frequency control, Energy Convers. Manage., 46, 1129–1146,

    Article  Google Scholar 

  21. Jaleeli, N. Ewart D. N. Fink, L. H. 1992.Understanding automatic generation control, IEEE Trans. Power Syst., 7, (3)1106–1112,

    Article  Google Scholar 

  22. IEEE Committee Report, Power plant response, IEEE Trans. Power App. Syst., 86, 484–399, 1967.

    Google Scholar 

  23. IEEE Committee Report, Dynamic models for steam and hydro turbines in power system studies, IEEE Trans. Power App. Syst., 92, 1904–1915, 1973.

    Google Scholar 

  24. Kundur, P. 1994.Power System Stability and Control. McGraw-Hill, New York, NY:

    Google Scholar 

  25. Nanda, J. Kothari M. L. Satsangi, P. S. 1983.Automatic generation control of an interconnected hydro-thermal system in continuous and discrete modes considering generation rate constraints, IEE Proc., 130, (1)455–460, Pt D,

    Google Scholar 

  26. Hiyama, T. 1982.Optimisation of discrete-type load–frequency regulators considering generation-rate constraints, IEE Proc., 129, (6)285–289, Pt C,

    Google Scholar 

  27. Kothari, M. L. Satsangi P. S. Nanda, J. 1981.Sampled data automatic generation control of interconnected reheat thermal systems considering generation rate constraints, IEEE Trans. Power App. Syst., 100, 2334–2342,

    Article  Google Scholar 

  28. Concordia, C. Kirchmayer L. K. Szymanski, E. A. 1957.Effect of speed governor dead-band on tie-line power and frequency control performance, Am. Inst. Electr. Eng (AIEE). Trans., 76, 429–435,

    Google Scholar 

  29. IEEE Standard 122–1991, Recommended practice for functional and performance characteristics of control systems for steam turbine–generator units, 1992.

    Google Scholar 

  30. Taylor, C. W. Lee K. Y. Dave, D. P. 1979.Automatic generation control analysis with governor dead band effects, IEEE Trans. Power App. Syst., 98, 2030–2036,

    Article  Google Scholar 

  31. Tripathy, S. C. Hope G. S. Malik, O. P. 1982.Optimization of load frequency control parameters with reheat steam turbines and governors dead-band nonlinearity, IEE Proc. Gener. Transm. Distrib., 129, (1)10–16,

    Article  Google Scholar 

  32. Tripathy, S. C. Bhatti, T. S. Jha, C. S. Malik O. P. Hope, G. S. 1984.Sampled data automatic generation control analysis with reheat steam turbines and governor dead-band effects, IEEE Trans. Power App. Syst., 103, (5)1045–1051,

    Article  Google Scholar 

  33. Sasaki T. Enomoto, K. 2002.Dynamic analysis of generation control performance standards, IEEE Trans. Power Syst., 17, (3)806–811,

    Article  Google Scholar 

  34. Mahmoud, M. S. 2000.Robust control and filtering for time-delay systems. Marcel Dekker, New York, NY:

    MATH  Google Scholar 

  35. Aweya, J. Montuno D. Y. Ouellette, M. 2004.Effects of control loop delay on the stability of a rate control algorithm, Int. J. Commun. Syst., 17, 833–850,

    Article  Google Scholar 

  36. Niculescu, S. I. 2001.Delay effects on stability: A robust control approach. Springer, Berlin:

    MATH  Google Scholar 

  37. Bhowmik, S. Tomosovic K. Bose, A. 2004.Communication models for third party load frequency control, IEEE Trans. Power Syst., 19, (1)543–548,

    Article  Google Scholar 

  38. Bevrani H. Hiyama, T. 2007.Robust load-frequency regulation: A real-time laboratory experiment, Optimal Control Appl. Methods, 28, (6)419–433,

    Article  MathSciNet  Google Scholar 

  39. Hiyama, T. Nagata T. Funabashi, T. 2004.Multi-agent based automatic generation control of isolated stand alone power system, Proc. Int. Conf. Power Syst. Technol., 1, 139–143,

    Article  Google Scholar 

  40. Bevrani H. Hiyama T. 2005.A robust solution for PI-based LFC problem with communication delays, IEEJ Trans. Power Energy, 25, (12)1188–1193,

    Article  Google Scholar 

  41. Yu X. Tomosovic, K. 2004.Application of linear matrix inequalities for load frequency control with communication delays, IEEE Trans. Power Syst., 19, (3)1508–1515,

    Article  Google Scholar 

  42. Bevrani H. Hiyama, T. 2007.Robust decentralized PI based LFC design for time-delay power systems, Energy Convers. Manage., 49, 193–204,

    Article  Google Scholar 

  43. S. Fukushima, T. Sasaki, S. Ihara, et al., Dynamic analysis of power system frequency control, Proc. CIGRE 2000 Session, No. 38–240, Paris, 2000.

    Google Scholar 

  44. H. Bevrani and T. Hiyama, On load–frequency regulation with time delays: Design and realtime implementation, IEEE Trans. Energy Convers., in press.

    Google Scholar 

  45. Hiskens I. A. Alseddiqui, Jassim 2006.Sensitivity, approximation, and uncertainty in power system dynamic simulation, IEEE Trans. Power Syst., 21, (4)1808–1820,

    Article  Google Scholar 

  46. Al-Othman A. K. Irving, M. R. 2005.A comparative study of two methods for uncertainty analysis in power system state estimation, IEEE Trans. Power Syst., 20, (2)1181–1182,

    Article  Google Scholar 

  47. Hockenberry J. R. Lesieutre, B. C. 2004.Evaluation of uncertainty in dynamic simulations of power system models: The probabilistic collocation method, IEEE Trans. Power Syst., 19, (3)1483–1491,

    Article  Google Scholar 

  48. Al-Othman A. K. Irving, M. R. 2005.Uncertainty modeling in power system state estimation, IEE Proc. Gener. Transm. Distrib., 152, (2)233–239,

    Article  Google Scholar 

  49. Maslennikov, V. A. Ustinov S.M. Milanovic, J. V. 2002.Method for considering uncertainties for robust tuning of PSS and evaluation of stability limits, IEE Proc. Gener. Transm. Distrib., 149, (3)295–299,

    Article  Google Scholar 

  50. Saric A. T. Stankovic, A. M. 2005.Model uncertainty in security assessment of power systems, IEEE Trans. Power Syst., 20, (3)1398–1407,

    Article  Google Scholar 

  51. Bevrani, H. Mitani Y. Tsuji, K. 2004.On robust load–frequency regulation in a restructured power system, IEEJ Trans. Power Energy, 124-B, (2)190–198,

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Frequency Response Characteristics and Dynamic Performance. In: Robust Power System Frequency Control. Power Electronics and Power Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84878-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84878-5_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84877-8

  • Online ISBN: 978-0-387-84878-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics