Skip to main content

History of Phase Change Memories

  • Chapter
Phase Change Materials

Abstract

This chapter reviews the history of phase change materials particularly in the applications of information storage. The chapter starts with the discovery of a one way resistance transformation phenomenon in a chalcogenide, namely molybdenite (MoS2). Then the evolution of the understanding of the underlying physics governing the phase change characteristics by various investigators is reviewed along with the applications of the phase change characteristics in information storage applications. The chapter ends with a table summarizing critical events in the phase change memory developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waterman, A. T.: Positive ionisation of certain hot salts, together with some observations on the electrical properties of molybdenite at high temperatures. Phil. Mag. 33, 225 (1917)

    Google Scholar 

  2. Waterman, A. T.: The electrical conductivity of molydenite, Phys. Rev. 21, 540-549 (1923)

    Article  Google Scholar 

  3. Wang, A.: Pulse transfer controlling devices. US Patent 2,708,722 (1955)

    Google Scholar 

  4. Burke, H. K. and Michon, G. J.: Integrated bistable memory cell. US Patent 3,389,383 (1968)

    Google Scholar 

  5. Dennard, R. H.: Field-effect transistor memory. US Patent 3,387,286 (1968)

    Google Scholar 

  6. Kahng, D.: Field effect semiconductor apparatus with memory involving entrapment of charge carriers. US Patent 3,500,142 (1970)

    Google Scholar 

  7. Wegener, H. A. R.: Electrically alterable non-destructive readout field effect transistor memory. US Patent 3,508,211 (1970)

    Google Scholar 

  8. Pearson, A. D., Northover, W. R., Dewald, J. F. and Peck Jr., W. F.: Chemical, physical, and electrical properties of some unusual inorganic glasses. Adv. in Glass Tech., pp. 357-365, Plenum Press, New York (1962)

    Google Scholar 

  9. Dewald, J. F., Pearson, A. D., Northover, W. R. and Peck Jr., W. F.: Semiconducting glasses. J. of Electrochem. Soc., p. 243C, (1962)

    Google Scholar 

  10. Ovshinsky, S. R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 22, 1450-1453 (1968)

    Article  Google Scholar 

  11. Dewald, J. F., Northover, W. R. and Pearson, A. D.: Multiple resistance semiconductor elements. US Patent 3,241,009 (1966)

    Google Scholar 

  12. Northover, W. R. and Pearson, A. D.: Glass composition. US Patent 3,117,013 (1964)

    Google Scholar 

  13. Ovshinsky, S. R.: Symmetrical current controlling device. US Patent 3,271,591 (1966)

    Google Scholar 

  14. Ovshinsky, S. R.: A history of the phase change technology. Memoires Optiques et Systemes, (1994), http://ovonic.com/PDFs/Optical_Memory_Research_Report/

  15. Shanefield, D. J. and Lighty, P. E.: Solid state element comprising semiconductive glass composition exhibiting negative incremental resistance. US Patent 3,448,425 (1969)

    Google Scholar 

  16. Shanefield, D. J.: Operating circuit for phase change memory devices. US Patent 3,448,302.

    Google Scholar 

  17. Neale, R. G., Nelson, D. L. and Moore, G. E.: Nonvolatile and reprogrammable, the read mostly memory is here. Electronics, pp. 56-60, Sept. 30 (1970)

    Google Scholar 

  18. Frohman-Bentchkowsky, D: An integrated Metal-Nitride-Oxide-Silicon (MNOS) memory. Proc. IEEE Lett. 57 1190-1192 (1969)

    Article  Google Scholar 

  19. Frohman-Bentchkowsky, D: A fully decoded 2048-bit electrically programmable FAMOS read-only memory. IEEE J. of Solid-State Circuits, SC-6, pp. 301-306 (1971)

    Article  Google Scholar 

  20. Iizuka, H., Sato, T., Masuoka, F., Ohuchi, K., Hara, H. and Takeishi, Y.: A fully-decoded 2048-bit avalanche-injection type, electrical alterable ROM. IEEE Int.. Electron Devices Meeting, Washington, D.C. (1972)

    Google Scholar 

  21. Chua, L. O.: Memristor – the missing circuit element. IEEE Trans. on Circuit Theory, CT-18, pp. 507-519 (1971)

    Article  Google Scholar 

  22. Special Issue on Amorphous Semiconductor Devices. IEEE Trans. on Electron Devices, ED-20, February (1973)

    Google Scholar 

  23. Shanks, R. R. and Davis, C.: A 1024-bit nonvolatile 15ns bipolar read-write memory. ISSCC Digest of Technical Papers, pp. 112-113, February (1978)

    Google Scholar 

  24. Moore, G. E.: Cramming more components onto integrated. Circuits. Electronics, 38, pp. 114–117, April 19 (1965)

    Google Scholar 

  25. Lai, S. and Lowrey, T.: OUM – A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. IEDM Digest of Technical Papers, pp. 803-806, December (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung H. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lam, C.H. (2009). History of Phase Change Memories. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_1

Download citation

Publish with us

Policies and ethics