Skip to main content

EPR Investigation of [NiFe] Hydrogenases

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 28))

EPR studies of the [NiFe] hydrogenases are reviewed. These enzymes contain a heterobimetallic [NiFe] center as the active site. The nickel is ligated to four cysteine residues, two of which form a bridge to the iron. The iron carries additionally 3 small inorganic diatomic ligands (2CN, CO). A third small ligand X is situated in the bridge between Ni and Fe. In the catalytic cycle the enzyme passes through a number of redox states, several of which are paramagnetic. The iron remains in the divalent low-spin (FeII, S = 0) state, whereas the nickel changes its valence and spin state during this cycle. Nickel is believed to bind the hydrogen and to be directly involved in the catalytic process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vignais PM, Billoud B, Meyer J. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501.

    PubMed  CAS  Google Scholar 

  2. Volbeda A, Charon M-H, Hatchikian EC, Frey M, Fontecilla-Camps JC. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587.

    Article  PubMed  CAS  Google Scholar 

  3. Volbeda A, Garcin E, Piras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC. 1996. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996.

    Article  CAS  Google Scholar 

  4. Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC. 1999. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557–566.

    Article  PubMed  CAS  Google Scholar 

  5. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC. 2005. Structural difference between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 10:239–249.

    Article  PubMed  CAS  Google Scholar 

  6. Higuchi Y, Yagi T, Yasuoka N. 1997. Unusual ligand structure in Ni–Fe active center and an additional Mg site in hydrogenase revealed by high resolution x-ray structure analysis. Structure 5:1671–1680.

    Article  PubMed  CAS  Google Scholar 

  7. Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T. 1999. Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 Å resolution. Structure 7:549–556.

    Article  PubMed  CAS  Google Scholar 

  8. Ogata H, Mizogushi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y. 2002. Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgarisMiyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc 124:11628–11635.

    Article  PubMed  CAS  Google Scholar 

  9. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y. 2005. Activation process of [NiFe] hydrogenase elucidated by high resultion x-ray analysis: conversion of the ready to unready state. Structure 13:1635–1642.

    Article  PubMed  CAS  Google Scholar 

  10. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC. 1997. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526.

    Article  PubMed  CAS  Google Scholar 

  11. Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, LeGall J, Carrando MA. 2001. [NiFe] hydrogenase form Desulfovibrio desulfuricansATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modeling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem 6:63–81.

    Article  PubMed  CAS  Google Scholar 

  12. Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH. 1995. Infrareddetectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. Biochemistry 34:5527–5535.

    Article  PubMed  CAS  Google Scholar 

  13. Bagley KA, van Garderen CJ, Chen M, Duin EC, Albracht SPJ, Woodruff WH. 1994. Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. Biochemistry 33:9229–9236.

    Article  PubMed  CAS  Google Scholar 

  14. Bleijlevens B, van Broekhuizen F, De Lacey AL, Roseboom W, Fernandez VM, Albracht SPJ. 2004. The activation of the [NiFe]-hydrogenase from Allochromatium vinosum: an infrared spectro-electrochemical study. J Biol Inorg Chem 9:743–752.

    Article  PubMed  CAS  Google Scholar 

  15. Coremans JMCC, van Garderen CJ, Albracht SPJ. 1992. On the redox equilibrium between H2 and hydrogenase. Biochim Biophys Acta 1119:148–156.

    PubMed  CAS  Google Scholar 

  16. Coremans JMCC, van der Zwaan JW, Albracht SPJ. 1992. Distinct redox behaviour of the prosthetic groups in ready and unready hydrogenase from Chromatium vinosum. Biochim Biophys Acta 1119:157–168.

    PubMed  CAS  Google Scholar 

  17. George S.J., Kurkin S., Thorneley RNF, Albracht SPJ. 2004. Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum: a stopped-flow infrared study. Biochemistry 43:6808–6819.

    Article  PubMed  CAS  Google Scholar 

  18. Kurkin S., George S.J., Thorneley RNF, Albracht SPJ. 2004. Hydrogen-induced activation of the [NiFe]-hydrogenase from Allochromatium vinosumas studied by stoppedflow infrared spectroscopy. Biochemistry 43:6820–6831.

    Article  PubMed  CAS  Google Scholar 

  19. Happe RP, Roseboom W, Albracht SPJ. 1999. Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosumwith H2 and CO. Eur J Biochem 259:602–608.

    Article  PubMed  CAS  Google Scholar 

  20. Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SPJ. 2006. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans, II: redox prop erties, light sensitivity and CO-ligand exchange as observed via infrared spectroscopy. J Biol Inorg Chem 11:102–118.

    Article  PubMed  CAS  Google Scholar 

  21. Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SPJ. 2004. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutrophaH16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691.

    Article  PubMed  CAS  Google Scholar 

  22. Buhrke T, Brecht M, Lubitz W, Friedrich B. 2002. The H2 sensor of Ralstonia eutropha: biochemical and spectroscopic analysis of mutant proteins modified at a conserved glutamine residue close to the [NiFe] active site. J Biol Inorg Chem 7:897–908.

    Article  PubMed  CAS  Google Scholar 

  23. Brecht M, van Gastel M, Buhrke T, Friedrich B, Lubitz W. 2003. Direct detection of a hydride ligand in the [NiFe] center of the regulatory hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083.

    Article  PubMed  CAS  Google Scholar 

  24. Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C, Friedrich B, Albracht SPJ. 2000. Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466:259–263.

    Article  PubMed  CAS  Google Scholar 

  25. Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B. 2000. The H2 sensor of Ralstonia eutrophais a member of the subclass of regulatory [NiFe] hydrogenase. J Bacteriol 182:2716–2724.

    Article  PubMed  CAS  Google Scholar 

  26. Löscher S, Burgdorf T, Buhrke T, Friedrich B, Dau H, Haumann M. 2005. Non– standard structures of the Ni-Fe cofactor in the regulatory and the NAD-reducing hydrogenases from Ralstonia eutropha. Biochem Soc Trans 33:25–27.

    Article  PubMed  Google Scholar 

  27. Pierik AJ, Schmelz M, Lenz O, Friedrich B, Albracht SPJ. 1998. Characterization of the active site of a hydrogen sensor from Alcaligenes eutrophus. FEBS Lett 438:231–235.

    Article  PubMed  CAS  Google Scholar 

  28. van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SPJ. 2004. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. Eur J Biochem 271:801–808.

    Article  PubMed  CAS  Google Scholar 

  29. Lenz O, Friedrich B. 1998. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci USA 95:12474–12479.

    Article  PubMed  CAS  Google Scholar 

  30. Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA. 1997. Biological activation of hydrogen. Nature 385:126–126.

    Article  PubMed  CAS  Google Scholar 

  31. Frey M, Fontecilla-Camps JC, Volbeda A. 2001. Nickel–iron hydrogenases. In Handbook of metalloproteins, Vol. 2, pp. 880–896. Ed A Messerschmidt, R Huber, T Poulos, K Wieghardt. Chichester: John Wiley & Sons.

    Google Scholar 

  32. Volbeda A, Fontecilla-Camps JC. 2005. Structure–function relationship of nickel–iron sites in hydrogenase and a comparison with the active site of other nickel–iron enzymes. Coord Chem Rev 249:1609–1619.

    Article  CAS  Google Scholar 

  33. Fernandez VM, Hatchikian EC, Cammack R. 1985. Properties and reactivation of two different deactivated forms of Desulfovibrio gigashydrogenase. Biochim Biophys Acta 832:69–79.

    CAS  Google Scholar 

  34. Cammack R, Patil DS, Hatchikian EC, Fernandez VM. 1987. Nickel and iron–sulphur centres in Desulfovibrio gigashydrogenase: ESR spectra, redox properties and interaction. Biochim Biophys Acta 912:98–109.

    CAS  Google Scholar 

  35. Medina M, Williams R, Cammack R. 1994. Studies of light-induced nickel EPR signals in Desulfovibrio gigashydrogenase. J Chem Soc Faraday Trans 90:2921–2924.

    Article  CAS  Google Scholar 

  36. van der Zwaan JW, Coremans JMCC, Bouwens ECM, Albracht SPJ. 1990. Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 1041:101–110.

    PubMed  Google Scholar 

  37. van der Zwaan JW, Albracht SPJ, Fontijn RD, Roelofs YBM. 1986. Electronparamagnetic-resonance evidence for direct interaction of carbon-monoxide with nickel in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 872:208–215.

    Google Scholar 

  38. Gu Z, Dong J, Allan CB, Choudhury SB, Franco R, Moura JJG, Moura I, LeGall J, Przybyla AE, Roseboom W, Albracht SPJ, Axley MJ, Scott RA, Maroney MJ. 1996. Structure of the Ni site in hydrogenases by X-ray absorption spectroscopy: species variation and the effects of redox poise. J Am Chem Soc 118:11155–11165.

    Article  CAS  Google Scholar 

  39. Gu WW, Jacquamet L, Patil DS, Wang HX, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP. 2003. Refinement of the nickel site structure in Desulfovibrio gigashydrogenase using range-extended EXAFS spectroscopy. J Inorg Biochem 93:41–51.

    Article  PubMed  CAS  Google Scholar 

  40. Maroney MJ, Bryngelson PA. 2001. Spectroscopic and model studies of the Ni–Fe hydrogenase reaction mechanism. J Biol Inorg Chem 6:453–459.

    Article  PubMed  CAS  Google Scholar 

  41. Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SPJ, Maroney MJ. 2000. Structural examination of the nickel site in Chromatium vinosumhydrogenase: redox state oscillation and structural changes accompanying reductive activation and CO binding. Biochemistry 39:7468–7479.

    Article  PubMed  CAS  Google Scholar 

  42. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM. 1997. Infrared-spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas. J Am Chem Soc 119:7181–7189.

    Article  Google Scholar 

  43. Fichtner C, Laurich C, Bothe E, Lubitz W. 2006. Spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio vulgarisMiyazaki F. Biochemistry 45:9706–9716.

    Article  PubMed  CAS  Google Scholar 

  44. Solomon EI, Pavel EG, Loeb KE, Campochiaro C. 1995. Magnetic circular-dichroism spectroscopy as a probe of the geometric of the geometric and electronic structure of nonheme ferrous enzymes. Coord Chem Rev 144:369–460.

    Article  CAS  Google Scholar 

  45. Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions. Oxford: Clarendon Press.

    Google Scholar 

  46. Lubitz W, Brecht M, Foerster S, van Gastel M, Stein M. 2003. EPR and ENDOR studies of [NiFe] hydrogenase: contributions to understanding the mechanism of biological hydrogen conversion. ACS Symp Ser 858:128–150.

    Article  CAS  Google Scholar 

  47. LeGall J, Ljungdahl PO, Moura I, Peck HD, Xavier AV, Moura JJG, Teixeira M, Huynh BH, DerVartanian DV. 1982. The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Comm 106:610–616.

    Article  PubMed  CAS  Google Scholar 

  48. Geßner C, Trofanchuk O, Kawagoe K, Higuchi Y, Yasuoka N, Lubitz W. 1996. Single crystal EPR study of the Ni center of NiFe hydrogenase. Chem Phys Lett 256:518–524.

    Article  Google Scholar 

  49. Cammack R, Patil DS, Aguirre R, Hatchikian EC. 1982. Redox properties of the ESRdetectable nickel in hydrogenase from Desulfovibrio gigas. FEBS Lett 142:289–292.

    Article  CAS  Google Scholar 

  50. Trofanchuk O, Stein M, Gessner Ch, Lendzian F, Higuchi Y, Lubitz W. 2000. Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgarisMiyazaki F. J Biol Inorg Chem 5:36–44.

    Article  PubMed  CAS  Google Scholar 

  51. Foerster S, Stein M, Brecht M, Ogata H, Higuchi Y, Lubitz W. 2003. Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93.

    Article  PubMed  CAS  Google Scholar 

  52. Guigliarelli B, More C, Fournel A, Asso M, Hatchikian EC, Williams R, Cammack R, Bertrand P. 1995. Structural organization of the Ni and the (4Fe–4S) centers in the active form of Desulfovibrio gigashydrogenase: analysis of the magnetic interactions by electron paramagnetic resonance spectroscopy. Biochemistry 34:4781–4790.

    Article  PubMed  CAS  Google Scholar 

  53. Dole F, Medina M, More C, Cammack R, Bertrand P, Guigliarelli B. 1996. Spin–Spin interactions between the Ni site and the [4Fe–4S] centers as a probe of light-induced structural changes in active Desulfovibrio gigashydrogenase. Biochemistry 35:16399–16406.

    Article  PubMed  CAS  Google Scholar 

  54. Müller A, Tscherny I, Kappl R, Hatchikian EC, Hüttermann J, Cammack R. 2002. Hydrogenase in the “active” state: determination of g-matrix axes and electron spin distribution at the active site by 1H ENDOR spectroscopy. J Biol Inorg Chem 7:177–194.

    Article  PubMed  CAS  Google Scholar 

  55. Cammack R, Fernandez VM, Schneider K. 1988. Nickel in hydrogenases from sulfatereducing, photosynthetic, and hydrogen-oxidizing bacteria. In The bioinorganic chemistry of nickel, pp. 167–190. Ed CRD Lancaster. New York: VCH Publishers.

    Google Scholar 

  56. Medina M, Hatchikian EC, Cammack R. 1996. Studies of light-induced nickel EPR signals in hydrogenase: comparison of enzymes with and without selenium. Biochim Biophys Acta 1275:227–236.

    Article  Google Scholar 

  57. Whitehead JP, Gurbiel RJ, Bagyinka C, Hoffman BM, Maroney MJ. 1993. The hydrogen binding site in hydorgenase: 35-GHz ENDOR and XAS studies of the Ni–C active form and the Ni–L photoproduct. J Am Chem Soc 115:5629–5635.

    Article  CAS  Google Scholar 

  58. Foerster S. 2003. EPR spectroscopic investigation of the active site of [NiFe]- hydrogenase: a contribution to the elucidation of the reaction mechanism. PhD dissertation, Technische Universität Berlin.

    Google Scholar 

  59. van der Zwaan JW, Albracht SPJ, Fontijn RD, Slater EC. 1985. Monovalent nickel in hydrogenase from Chromatium vinosum. FEBS Lett 2:271–277.

    Google Scholar 

  60. Sorgenfrei O, Klein A, Albracht SPJ. 1993. Influence of illumination on the electronic interaction between 77Se and nickel in active F420-non-reducing hydrogenase from Methanococcus voltae. FEBS Lett 332:291–297.

    Article  PubMed  CAS  Google Scholar 

  61. Gewirth AA, Cohen SL, Schugar HJ, Solomon EI. 1987. Spectroscopic and theoretical studies of the unusual EPR parameters of distored tetrahedral cupric sites: correlations to X-ray spectral features of core levels. Inorg Chem 26:1133–1146.

    Article  CAS  Google Scholar 

  62. Fichtner C, van Gastel M, Lubitz W. 2003. Wavelength dependence of the photoinduced conversion of the Ni–C to the Ni–L redox state in the [NiFe] Hydrogenase of Desulfovibrio vulgarisMiyazaki F. Phys Chem Chem Phys 5:5507–5513.

    Article  CAS  Google Scholar 

  63. Stein M, Lubitz W. 2001. DFT calculations of the electronic structure of the paramagnetic states Ni–A, Ni–B and Ni–C of [NiFe] hydrogenase. Phys Chem Chem Phys 3:2668–2675.

    Article  CAS  Google Scholar 

  64. Huyett JE, Carepo M, Pamplona A, Franco R, Moura I, Moura JJG, Hoffman BM. 1997. 57Fe Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: comparison of the NiA, NiB, and NiC states. J Am Chem Soc 119:9291–9292.

    Article  CAS  Google Scholar 

  65. Albracht SPJ, Graf E-G, Thauer RK. 1982. The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum. FEBS Lett 140:311–313.

    Article  PubMed  CAS  Google Scholar 

  66. Moura JJG, Moura I, Huynh BH, Krüger H-J, Teixeira M, DuVarney RC, DerVartanian DV, Xavier AV, Peck Jr HD, LeGall J. 1982. Unambigous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigashydrogenase. Biochem Biophys Res Comm 108:1388–1393.

    Article  PubMed  CAS  Google Scholar 

  67. Neese F. 2003. Metal and ligand hyperfine couplings in transition metal complexes: the effect of spin-orbit coupling as studied by coupled perturbed Kohn-Sham theory. J Chem Phys 118:3939–3948.

    Article  CAS  Google Scholar 

  68. Stein M, Lubitz W. 2004. Relativistic DFT calculations of the reaction cycle intermediates of [NiFe] hydrogenase: a model for the enzymatic mechanism. J Inorg Biochem 98:862–877.

    Article  PubMed  CAS  Google Scholar 

  69. Neese F. 2001. Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096.

    Article  CAS  Google Scholar 

  70. Pavlov M, Siegbahn PEM, Blomberg MRA, Crabtree RH. 1998. Mechanism of H–H activation by nickel-iron hydrogenase. J Am Chem Soc 120:548–555.

    Article  CAS  Google Scholar 

  71. De Gioia L, Fantucci P, Guigliarelli B, Bertrand P. 1999. Ni–Fe hydrogenases: a density functional theory study of active site models. Inorg Chem 38:2658–2662.

    Article  Google Scholar 

  72. Pavlov M, Blomberg MRA, Siegbahn PEM. 1999. New aspects of H2 activation by nickel–iron hydrogenase. Int J Quantum Chem 73:197–207.

    Article  CAS  Google Scholar 

  73. Stein M, van Lenthe E, Baerends EJ, Lubitz W. 2001. g- and A-tensor calculations in the zero-order approximation for relativistic effects of Ni complexes (Ni(mnt) 2 and Ni(CO)3H as model complexes for the active center of [NiFe]-hydrogenase. J Phys Chem A 105:416–425.

    Article  CAS  Google Scholar 

  74. Stein M, van Lenthe E, Baerends EJ, Lubitz W. 2001. Relativistic DFT calculations of the paramagnetic intermediates of the [NiFe] hydrogenase: implications for the enzymatic mechanism. J Am Chem Soc 123:5839–5840.

    Article  PubMed  CAS  Google Scholar 

  75. Stein M, Lubitz W. 2001. The electronic structure of the catalytic intermediate Ni–C in [NiFe] and [NiFeSe] hydrogenases. Phys Chem Chem Phys 3:5115–5120.

    Article  CAS  Google Scholar 

  76. Stein M. 2001. Insight into the mechanism of [NiFe] hydrogenase by means of magnetic resonance experiments and DFT calculations. PhD dissertation, Technische Unversität, Berlin.

    Google Scholar 

  77. Stadler C, De Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM. 2002. Density functional calculations for modeling the active site of nickel-iron hydrogenases, 2: predictions for the unready and ready states and the corresponding activation processes. Inorg Chem 41:4424–4434.

    Article  PubMed  CAS  Google Scholar 

  78. Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ. 1999. A hybrid density functional theory/molecular mechanics study of nickel–iron hydrognease: investigation of the active site redox states. J Am Chem Soc 121:4468–4477.

    Article  CAS  Google Scholar 

  79. Bruschi M, Zampella G, Fantucci P, De Gioia L. 2005. DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord Chem Rev 249:1620–1640.

    Article  CAS  Google Scholar 

  80. van Gastel M, Fichtner C, Neese F, Lubitz W. 2005. EPR experiments to elucidate the structure of the ready and unready states of the [NiFe] hydrogenase of Desulfovibrio vulgarisMiyazaki F. Biochem Soc Trans 33:7–11.

    Article  PubMed  Google Scholar 

  81. Goenka Agrawal A, van Gastel M, Gärtner W, Lubitz W. 2006. Hydrogen-bonding affects the [NiFe] active site of Desulfovibrio vulgarisMiyazaki F hydrogenase: a hyperfine sublevel correlation spectroscopy and density functional theory study. J Phys Chem B 110:8142–8150.

    Article  CAS  Google Scholar 

  82. Albracht SPJ, Kröger A, van der Zwaan JW, Unden G, Böcher R, Mell H, Fontijn RD. 1986. Direct evidence for sulfur as a ligand to nickel in hydrogenase: an EPR study of the enzyme from Wolinella-succinogenesenriched in 33S. Biochim Biophys Acta 874:116–127.

    CAS  Google Scholar 

  83. van Gastel M, Stein M, Brecht M, Schröder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W. 2006. A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgarisMiyazaki F. J Biol Inorg Chem 11:41–51.

    Article  PubMed  CAS  Google Scholar 

  84. Geßner C, Stein M, Albracht SPJ, Lubitz W. 1999. Orientation-selected ENDOR of the active center in Chromatium vinosum[NiFe] hydrogenase in the oxidized “ready” state. J Biol Inorg Chem 4:379–389.

    Article  PubMed  Google Scholar 

  85. Ogata H, et.al. 2006. unpublished data.

    Google Scholar 

  86. Foerster S, van Gastel M, Brecht M, Lubitz W. 2005. An orientation-selected ENDOR and HYSCORE study of the Ni–C active state of Desulfovibrio vulgarisMiyazaki F hydrogenase. J Biol Inorg Chem 10:51–62.

    Article  PubMed  CAS  Google Scholar 

  87. Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM. 2002. 17O ENDOR detection of a solvent-derived Ni– (OHx)–Fe bridge that is lost upon activation of the Hydrogenase from Desulfovibrio gigas. J Am Chem Soc 124:281–286.

    Article  PubMed  CAS  Google Scholar 

  88. Vincent KA, Belsey NA, Lubitz W, Armstrong FA. 2006. Rapid and reversible reactions of [NiFe] hydrogenases with sulfide. J Am Chem Soc 128:7448–7449.

    Article  PubMed  CAS  Google Scholar 

  89. Fan C, Teixeira M, Moura JJG, Moura I, Huynh BH, LeGall J, Peck Jr HD, Hoffman BM. 1991. Detection and characterisation of exchangable protons bound to the hydrogen-activation nickel site of desulfovibrio gigashydrogenase: a 1H and 2H Q-Band ENDOR study. J Am Chem Soc 113:20–24.

    Article  CAS  Google Scholar 

  90. Chapman A, Cammack R, Hatchikian EC, McCracken J, Peisach J. 1988. A pulsed EPR study of redox-dependent hyperfine interactions for nickel centre of Desulfovibrio gigashydrogenase. FEBS Lett 242:134–138.

    Article  PubMed  CAS  Google Scholar 

  91. Bleijlevens B, Faber BW, Albracht SPJ. 2001. The [NiFe] hydrogenase from Allochromatium vinosumstudied in EPR-detectable states: H/D exchange experiments that yield new information about the structure of the active site. J Biol Inorg Chem 6:763–769.

    Article  PubMed  CAS  Google Scholar 

  92. Stadler C, De Lacey AL, Hernandez B, Fernandez VM, Conesa JC. 2002. Density functional calculations for modeling the oxidized states of the active site of nickel-iron hydrogenases, 1: verification of the Method with Paramagnetic Ni and CO complexes. Inorg Chem 41:4417–4423.

    Article  PubMed  CAS  Google Scholar 

  93. Brecht M. 2001. Hochfeld- und Puls-EPR-Untersuchungen an den Kofaktoren von [NiFe]-Hydrogenasen: Beiträge zur Klärung des Mechanismusses der biologischen Wasserspaltung. PhD dissertation, Technische Universität, Berlin.

    Google Scholar 

  94. Elsässer C, Brecht M, Bittl R. 2002. Pulsed electron-electron double resonance on multinuclear metal centers: assignement of spin projection factors based on the dipolar interaction. J Am Chem Soc 124:12606–12611.

    Article  PubMed  CAS  Google Scholar 

  95. Wang H, Patil DS, Gu W, Jacquamet L, Friedrich S, Funk T, Cramer SP. 2001. L-edge X-ray absorption spectroscopy of some Ni enzymes: probe of Ni electronic structure. J Elec Spec Rel Phen 114–116:855–863.

    Article  Google Scholar 

  96. Lubitz W, van Gastel M, Gärtner W. 2007. Nickel iron hydrogenases. In Metal ions in life sciences. Ed A Sigel, H Sigel, RKO Sigel. Chichester: John Wiley & Sons. In press.

    Google Scholar 

  97. Morris RH. 2006. Hydrogenase and model complexes. In Concepts and models in bioinorganic chemistry, pp. 331–362. Ed H-B Kraatz, N Metzler-Nolte. Weinheim: Wiley-VCH.

    Google Scholar 

  98. Lubitz W, Reijerse E, van Gastel M. 2007. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice van Gastel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

van Gastel, M., Lubitz, W. (2009). EPR Investigation of [NiFe] Hydrogenases. In: Berliner, L., Hanson, G. (eds) High Resolution EPR. Biological Magnetic Resonance, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84856-3_10

Download citation

Publish with us

Policies and ethics