Diuretics and alcohol ingestion

  • Sheldon C. Chaffer
  • Jules B. Puschett

Diuretics are among the most frequently prescribed drugs for the treatment of both edematous and non-edematous states. With respect to the latter category, they are most often utilized in the therapy of hypertension. They may injure the kidney either reversibly or irremediably, a distinction which often depends upon whether they have induced functional or anatomic damage. Ordinarily, the former type of disorder reverses more rapidly than the latter. However, anatomical lesions, for example those that may be associated with acute kidney injury, may also respond to the removal of the offending agent.


Acute Kidney Injury Interstitial Nephritis Ethacrynic Acid Acute Interstitial Nephritis Calcium Oxalate Monohydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Puschett JB, Winaver J. Effects of diuretics on renal function. In: Handbook of physiology. Section 8 renal physiology. Windhager EE (editor). Oxford Press, New York 1992; p. 2335-406.Google Scholar
  2. 2.
    Thomson SC, Blantz RC. Homeostatic efficiency of tubuloglomerular feedback in hydropenia, euvolemia, and acute volume expansion. Am J Physiol 1993; 264(6 Pt 2):F930-6.PubMedGoogle Scholar
  3. 3.
    Thomson SC, Blantz RC, Vallon V. Increased tubular flow induces resetting of tubuloglomerular feedback in euvolemic rats. Am J Physiol 1996; 270(3 Pt 2):F461-8.PubMedGoogle Scholar
  4. 4.
    Schnermann J, Wright FS, Davis JM, Stackerberg WV, Grill G. Regulation of superficial nephron filtration rate by tubuloglomerular feedback. Pflugers Arch 1970; 318:147-75.PubMedGoogle Scholar
  5. 5.
    Thurau K, Schnermann J, Nagel W, Horster M, Wahl M. Composition of tubular fluid in the macula densa segment as a factor regulationg the function of the juxtaglomerular apparatus. Circ Res 1967; 20-21 (Suppl 2):79-90.Google Scholar
  6. 6.
    Tucker BJ, Steiner RW, Gushwa LC, Blantz RC. Studies on the tubulo-glomerular feedback system in the rat. The mechanism of reduction in filtration rate with benzolamide. J Clin Invest 1978; 62:993-1004.PubMedGoogle Scholar
  7. 7.
    Harris RC, Cheng H, Wang J, Zhang M, McKanna JA. Interactions of the renin-angiotensin system and neuronal nitric oxide syn- thase in regulation of cyclooxygenase-2 in the macula densa. Acta Physiol Scand 2000; 168:47-51.PubMedGoogle Scholar
  8. 8.
    Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94(6):2504-10, 1994PubMedGoogle Scholar
  9. 9.
    Jensen BL, Kurtz A. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake. Kidney Int 1997; 52(5):1242-9.PubMedGoogle Scholar
  10. 10.
    Yang T, Singh I, Pham H, Daqing S, Smart A, Schnermann JB, Briggs JP. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. Am J Physiol 1998; 274(3 Pt 2):F481-89.PubMedGoogle Scholar
  11. 11.
    Puschett JB, Goldberg M. The acute effects of furosemide on acid and electrolyte excretion in man. J Lab Clin med 1968; 71:666- 677.PubMedGoogle Scholar
  12. 12.
    Burke TJ, Duchin KL. Glomerular filtration during furosemide diuresis in the dog. Kidney Int 1979; 16:672-680.PubMedGoogle Scholar
  13. 13.
    Hook JB, Blatt AH, Brody MJ, Williamson HE. Effects of several saluretic-diuretic agents on renal hemodynamics. J Pharmacol Exp Ther 1966; 154:667-673.PubMedGoogle Scholar
  14. 14.
    Vander AJ, Carlson J. Mechanism of the effects of furosemide on renin secretion in anesthetized dogs. Circ Res 1969; 25:145- 152.PubMedGoogle Scholar
  15. 15.
    Tucker BJ, Blantz RC. Effect of furosemide administraton on glomerular and tubular dynamics in the rat. Kidney Int 1984; 26:112-121.PubMedGoogle Scholar
  16. 16.
    Meyer P, Menard J, Papanicolaou N, Alexandre JM, Devaux C, Milliez P. Mechanism of rennin release following furosemide diuresis in the rabbit. Am J Physiol 1968; 215:908-915.PubMedGoogle Scholar
  17. 17.
    Brenner BM, Keimowitz RI, Wright FS, Berliner RW. An inhibitory effect of furosemide on sodium reabsorption by the proximal tubule of the rat nephron. J Clin Invest 1969; 48:290-300.PubMedGoogle Scholar
  18. 18.
    Burke TJ, Robinson RR, Clapp JR. Determinants of the effect of furosemide on the proximal tubule. Kidney Int 1972; 1:12-18.PubMedGoogle Scholar
  19. 19.
    Birtch AG, Zakheim RM, Jones LG, Barger AC. Redistribution of renal blood flow produced by furosemide and ethacrynic acid. Cir Res 1967; 21:869-878.Google Scholar
  20. 20.
    Dluhy AG, Wolf GL, lauler DP. Vasodilator properties of ethacrynic acid in the perfused dog kidney. Clin Sci 1970; 38:347-357.PubMedGoogle Scholar
  21. 21.
    McNay JL, Kishimoto T. Selective renal vascular effects of ethacrynic acid. J Pharmacol Exp Ther 1970; 174:159-168.PubMedGoogle Scholar
  22. 22.
    Early LE, Friedler RM. Tubular effects of ethacrynic acid. J Clin Invest 1964; 43:1495-1506.Google Scholar
  23. 23.
    Olsen UB. Indomethacin inhibition of bemetanide diuresis in dogs. Acta Pharmacol Toxicol 1975; 37:65-78.Google Scholar
  24. 24.
    Puschett JB, Sylk D, Teredesai PR. Uncoupling of proximal sodium bicarbonate from sodium phosphate transport by bumetanide. Am J Physiol 1978; 235 (Renal Fluid Electrolyte Physiol 4):F403-F405.PubMedGoogle Scholar
  25. 25.
    Olsen UB. Prostaglandin/kinin activity related to changed renal compliance after bumetanide in dogs. Acta Pharmacol Toxicol 1977; 40:430-438.Google Scholar
  26. 26.
    Olsen UB, Ahnfelt-Ronne I. Renal cortical blood redistribution after bumetanide related to hterogenicity of cortical prostaglandin metabolism in dogs. Acta Physiol Scand 1976; 97:251-257.PubMedGoogle Scholar
  27. 27.
    Bourke E, Asbury MJA, O’Sullivan S, Gatenby PBB. The sites of action of bumetanide in man. Eur J Pharmacol 1973; 23:283-289.PubMedGoogle Scholar
  28. 28.
    Karlander S-G, Henning R Lundvall O. Renal effects of bumetanide, a new saluretic agent. Eur J Clin Pharmacol 1973; 6:220- 223.PubMedGoogle Scholar
  29. 29.
    Jayakumar S, Puschett JB. Study of the sites and mechanism of action of bumetanide in man. J Pharmacol Exp Ther 1977; 201:251-258.PubMedGoogle Scholar
  30. 30.
    Walter SJ, Laycock JF, Shirley DG. A micropuncture study of proximal tubular function after acute hydrochlorothiazide adminis- tration to Brattleboro rats with diabetes insipidus. Clin Sci 1979; 57:427-434.PubMedGoogle Scholar
  31. 31.
    Krause HH, Dume T, Koch KM, Ochwadt B. Intratubularer druck, glomerularer capillardruck und glomerulumfiltrat nach furosemid und hydrochlorothiazide. Pflugers Arch 1967;295:80-89.Google Scholar
  32. 32.
    Cassin S, Vogh B. Effect of hydrochlorothiazide on renal blood flow and clearance of para-aminohippurate and creatinine. Proc Soc Exp Biol Med 1966; 122:970-973.PubMedGoogle Scholar
  33. 33.
    Gadllah MF, Lynn M, Work J. Case Report: Mannitol nephrotoxicity syndrome: role of hemodialysis and postulate of mechanisms. Am J Med Sci 1995; 309(4):219-222.Google Scholar
  34. 34.
    Better OS, Rubinstein I, Winaver JM, Knochel JP. Mannitol therapy revisited (1940-1997). Kidney Int 1997; 51:886-894.Google Scholar
  35. 35.
    Goldwasser P, Fotino S. Acute renal failure following massive mannitol infusion: Appropriate response of tubuloglomerular feedback? Arch Intern Med 1984; 144:2214-2216.PubMedGoogle Scholar
  36. 36.
    Whelan TV, Bacon ME, Madden M, Patel TG, Handy R. Acute renal failure associated with mannitol intoxication. Arch Intern Med 1984; 144:2053-2055.PubMedGoogle Scholar
  37. 37.
    Horgen KJ, Ottaviano YL, Watson AJ. Acute renal failure due to mannitol intoxication. Am J Nephrol 1989; 9:106-109.Google Scholar
  38. 38.
    Rello J, Trigner C, Sanchez JM, Net A. Acute renal failure following massive mannitol infusion. Nephron 1989; 53:377-378.PubMedGoogle Scholar
  39. 39.
    Weaver A, Sica DA. Mannitol-induced acute renal failure. Nephron 1987;45:233-235.PubMedGoogle Scholar
  40. 40.
    Rabetoy GM, Fredericks MR, Hostetteler CF. Where the kidney is concerned, how much mannitol is too much? Ann Pharmacother 1993;27:25-28.PubMedGoogle Scholar
  41. 41.
    Dormer HR, Sondheimer JH, Cadnapaphornchai P. Mannitol-induced acute renal failure. Medicine 1990; 69(3):153-159.Google Scholar
  42. 42.
    Mansbach AB, Madden SC, Latta H. Light and electron microscopic changes in proximal tubules of rats after administration of glucose, mannitol, suctose or dextran. Lab Invest 1962; 11:421-432.Google Scholar
  43. 43.
    Dalgard OZ, Pederson KJ. Some observations of the fine structure of human kidneys in acute anuria and osmotic diuresis. In: Renal Biopsy. Wolstenholme GEW, Cameron MP (editors). Little Brown, New York, 1962:Google Scholar
  44. 44.
    Read RC, Johnson JA, Vick JA, Meyre MW. Vascular effects of hypertonic solutions. Circ Research 1960; 8:538-548.Google Scholar
  45. 45.
    Krishnamurty VSR, Adams HR, Smitherman TC, Templeton GH, Willerson JT. Influence of mannitol on contractile responses of isolated perfused arteries. Am J Physiol 1977; 232(1):H59-66.PubMedGoogle Scholar
  46. 46.
    Temes SP, Lilien OM, Chamberlain W. A direct vasoconstrictor effect of mannitol on the renal artery. Surg Gynecol Obstet 1975; 141:223-226.PubMedGoogle Scholar
  47. 47.
    Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the rennin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation 1981; 63:645-51.PubMedGoogle Scholar
  48. 48.
    Weber KT, Villarreal D. Aldosterone and antialdosterone therapy in congestive heart failure. Am J Cardiol 1993; 71:(suppl)3A- 11A.PubMedGoogle Scholar
  49. 49.
    Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with servere conges- tive heart failure and their relation to mortality. Circulation 1990;82:1730-1736.PubMedGoogle Scholar
  50. 50.
    Barr CS, Lang CC, Hanson J, Arnott M, Kennedy N, Struthers AD. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995; 76:1259-65.PubMedGoogle Scholar
  51. 51.
    Keidar S, Hayek T, Kaplan M, Povlotsky E, Hamoud S, Coleman R, Aviram M. Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2003; 41(6):955-963.PubMedGoogle Scholar
  52. 52.
    Rocha R, Stier CT Jr. Pathophysiological effects of aldosterone in cardiovascular tissues. Trends Endocrinol Metab 2001; 12:308- 14.PubMedGoogle Scholar
  53. 53.
    Rocha R, Steir CT Jr, Kifor I, Ochoa-Maya MR, Rennke HG, Williams GH, Adler GK. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000; 141(10):3871-8.PubMedGoogle Scholar
  54. 54.
    Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH. Beneficial effects of adding spironolactone to recommended anti- hypertensive treatment in diabetic nephropathy. Diabetes Care 2005; 28:2106-2112.PubMedGoogle Scholar
  55. 55.
    Ribstein J, Guilhem DC, Pierre F, Mimran A. Relative glomerular hyperfiltration in primary hyperaldosteronism. J Am Soc Nephrol 2005; 16:1320-1325.PubMedGoogle Scholar
  56. 56.
    Van den Meiracker AH, Baggen RGA, Pauli S, Lindemans A, Vulto AG, Polermans D, Boomsma F. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertension 2006; 24:2285-2292.Google Scholar
  57. 57.
    Sechi LA, Novello M, Lapenna R, Baroselli S, Nadalini E, Colussi GL, Catena C. Long-term renal outcomes in patients with primary aldosteronism. JAMA 2006; 295:2638-2645.PubMedGoogle Scholar
  58. 58.
    Councilman WM. Acute interstitial nephritis. J Exp Med 1898; 3:393-420.PubMedGoogle Scholar
  59. 59.
    Black-Schaffer B. Pathology of anaphylaxis due to sulfonamide drugs. Arch Path 1943; 39:301-14.Google Scholar
  60. 60.
    Baldwin DS, Levine BB, McClusky RT, Gallo GR. Renal failure and interstitial nephritis due to penicillin and methicillin. N Engl J Med 1968; 279:1245-52.PubMedGoogle Scholar
  61. 61.
    Neilson EG. Pathogenesis and therapy of interstitial nephritis. Kidney Int 1989; 35:1257-1270.PubMedGoogle Scholar
  62. 62.
    Schwartz A, Krause PH, Kunzendorf U, Keller F, Distier A. The outcome of acute interstitial nephritis: risk factors for the transition from acute to chronic interstitial nephritis. Clin Nephrol 2000; 54(3):179-190.Google Scholar
  63. 63.
    Lyons H, Pinn VW, Cortell S, Cohen JJ, Harrington JT. Allergic interstitial nephritis causing reversible renal failure in four patients with idiopathic nephritic syndrome. N Engl J Med 1973; 288(3):124-128.PubMedCrossRefGoogle Scholar
  64. 64.
    Magil AB, Ballon HS, Cameron EC, Rae A. Acute interstitial nephritis associated with thiazide diuretics. Am J Med 1980; 69:939-943.PubMedGoogle Scholar
  65. 65.
    Bailey RR, Lynn KL, Drennan CJ, Turner GAL. Triamterene-induced acute interstitial nephritis. Lancet 1982; 1:226.PubMedGoogle Scholar
  66. 66.
    Roy LF, Villeneuve J-P, Dumont A, Dufresne LR, Duran MA, Morin C, Jobin J. Irreversible renal failure associated with triamterene. Am J Nephrol 1991; 11(6):486-488.PubMedGoogle Scholar
  67. 67.
    Spence JD, Wong DG, Lindsay RM. Effects of triamterene and amiloride on urinary sediment in hypertensive patients taking hydrochlorothiazide. Lancet 1985;:73-75.Google Scholar
  68. 68.
    Peskoe ST, McMillan JH, Lorch A, Sussman H, Ozawa T. Reversible acute renal failure associated with chlorthalidone therapy: possible drug induced interstitial nephritis. J Med Assoc Ga 1978; 67:17-18.PubMedGoogle Scholar
  69. 69.
    Ooi BS, Jao W, First MR, Mancilla R, Pollak VE. Acute interstitial nephritis. A clinical and pathologic study based on renal biopsies. Am J Med 1975; 59:614-28.PubMedGoogle Scholar
  70. 70.
    Walker RG, Whitworth JA, Kincaid-Smith PS. Acute interstitial nephritis in a patient taking tienilic acid. Brit Med J 1980; 280:1212.PubMedGoogle Scholar
  71. 71.
    Newstead CG, Moore RH, Barnes AJ. Interstitial nephritis associated with indapamide. Brit Med J 1990; 300:1344.PubMedGoogle Scholar
  72. 72.
    Pusey CD, Saltissi D, Bloodworth L, Rainford DJ, Christie JL. Drug associated acute interstitial nephritis: clinical and pathologic features and the response to high dose steroid therapy. Q J Med 1983; 52:194-211.PubMedGoogle Scholar
  73. 73.
    Ten RM, Torres VE, Milliner DW, Schwab TR, Holley KE, Gleich GJ. Acute interstitial nephritis: immunologic and clinical aspects. Mayo Clin Proc 1988; 63:921-930.PubMedGoogle Scholar
  74. 74.
    Kleinknecht D, Vanhille PH, Morel-Moroger L, Kanfer A, Lemaitre V, Mery JP, Laederich J, Callard P. Acute interstitial nephritis due to drug hypersensitivity. An up-to-date review with a report of 19 cases. Adv Nephrol 1983; 12:277-308.Google Scholar
  75. 75.
    Kelly CJ, Neilson EG. Tubulointerstitial diseases. In, The Kidney, seventh edition. Brenner BM (editor). Saunders, Philadelphia 2004; p. 1495.Google Scholar
  76. 76.
    Park CW, You HY, Kim YK, Chang YS, Shin YS, Hong CK, Kim YC, Bang BK. Letter: Chronic tubulointerstitial nephritis and distal renal tubular acidosis in a patient with furosemide abuse. Nephrol Dial Trans 2001; 16:867-869.Google Scholar
  77. 77.
    Larsson GB, Langer L, Nassberger L. Thiazide-induced kidney damage with circulating antibodies against myeloperoxidase and cardiolipin. J Intern Med 1993; 233:493-494.PubMedGoogle Scholar
  78. 78.
    Byornberg A, Gesslen H. Thiazides: a cause of necrotizing vasculitis. Lancet 1965; 2:982.Google Scholar
  79. 79.
    Grunwald MH, Halevy S, Livni E. Allergic vasculitis induces by hydrochlorothiazide: confirmation by mast cell degranulation test. Isr J Med Sci 1989; 25:572-574.PubMedGoogle Scholar
  80. 80.
    Reed BR, Huff JC, Jones SK, Orton PW, Lee LA, Norris PA. Subacute cutaneous lupus erythematosis associated with hydrochloro- thiazide treatment. Ann Intern Med 1985 103:49-51.PubMedGoogle Scholar
  81. 81.
    Fitzgerald EW. Fatal glomerulonephritis complicating allergic purpura due to chlorothiazide. Arch Intern Med 1960; 105:305- 310.PubMedGoogle Scholar
  82. 82.
    Kjelbo H, Stakeberg H, Mellgren J. Possibly thiazide-induced renal necrotizing vasculitis. Lancet 1965; 2:1035.Google Scholar
  83. 83.
    Cox NH, Hodkin P. Vasculitis due to metolazone. Postgrad Med J 1991; 67:860.PubMedGoogle Scholar
  84. 84.
    DeMartini FE, Wheaton EA, Healey LA, Larugh JH. Effect of chlorothiazide on renal excretion of uric acid. Am J Med 1962; 32:572- 577.Google Scholar
  85. 85.
    Puschett JB. Clinical uses of diuretics. In: Handbook of experimental pharmacology. Diuretics. Greger R, Knauf H, Mutschler E (editors). Springer-Verlag, Berlin 1995.Google Scholar
  86. 86.
    Steele TH. Importance and pathogenesis of diuretic-induced hyperuricemia. In: Diuretics IV. Chemistry, pharmacology and clini- cal applications. Puschett JB, Greenberg A (editors). Elsevier, Amsterdam 1993; p. 231-238.Google Scholar
  87. 87.
    Carlsen JE, Kober L Torp-Pedersen C, Johansen P. Relation between dose of bendrofuazide, anti-hypertensive effect, and adverse biochemical effects. Br Med J 1990; 300:975-978.Google Scholar
  88. 88.
    Berglund G, Andersson O. Low doses of hydrochlorothiazide in hypertension. Antihypertensive and metabolic effects. Eur J Pharmacol 1976; 10:177-182.Google Scholar
  89. 89.
    Liang MH, Fries JF. Asymptomatic hyperuricemia: the case for conservative management. Ann Intern Med 1978; 88:666-670.PubMedGoogle Scholar
  90. 90.
    Hall AP, Barney PE, Dawber TR, McNamara PM. Epidemiology of gout and hyperuricemia. A long-term population study. Am J Med 1967; 42:27-37.PubMedGoogle Scholar
  91. 91.
    Gutman AB, Yü TF. Renal function and gout with a commentary on the renal regulation of urate excretion, and the role of the kidney in the pathogenisis of gout. Am J Med 1957; 23:600-622.PubMedGoogle Scholar
  92. 92.
    Fessel WJ, Siegelaub AB, Johnson ES. Correlation and consequences of asymptomatic hyperuricemia. Arch Intern Med 1973; 132: 44-54.PubMedGoogle Scholar
  93. 93.
    Fessel WJ. Renal outcomes of gout and hyperuricemia. Am J Med 1979; 67:74-82.PubMedGoogle Scholar
  94. 94.
    Klinenberg JR, Gonick HC, Dornfeld L. Renal function abnormalities in patient with asymptomatic hyperuricemia. Arthritis Rheum 1975; 10(supp):725-730.Google Scholar
  95. 95.
    Briney WG, Ogden D, Bartholomew B, Smythe CJ. The influence of allopurinol on renal function in gout. Arthritis Rheum 1975; 18(supp):877-881.PubMedGoogle Scholar
  96. 96.
    Berger L, Yü TF. Renal function in gout IV. Analysis of 524 gouty subjects including long-term follow-up studies. Am J Med 1975; 59:605-613.PubMedGoogle Scholar
  97. 97.
    Rosenfeld JB. Effect of long-term allopurinol administraton on serial GFR in normotensive and hypertensive hyperuricemic subjects. Adv Exp Med Biol 1974; 41:581-596.PubMedGoogle Scholar
  98. 98.
    Steele TH, Manuel MA, Boner G. Diuretics, urate excretion and sodium reabsorption: effect of acetazolamide and urinary alkali- nization. Nephron 1975; 14:48-61.Google Scholar
  99. 99.
    Alon US, Scagliotti D, Garola RE. Nephrocalcinosis and nephrolithiasis in infants with congestive heart failure treated with furo- semide. J Pediatr 1994; 125:149-151.PubMedGoogle Scholar
  100. 100.
    Downing GJ, Egelhoff JC, Daily DK, Thomas MK, Alon U. Kidney function in very low birth weight infants with furosemide-related renal calcifications at ages 1 to 2 years. J Pediatr 1992; 120:599-604.PubMedGoogle Scholar
  101. 101.
    Hufnagle KG, Khan SN, Penn D, Cacciarelli A, Williams P. Renal calcifications: a complication of long-term furosemide therapy in preterm infants. Pediatrics 1982; 70:360-363.PubMedGoogle Scholar
  102. 102.
    Jacinto JS, Modanlou HD, Crade M, Strauss AA, Bosu SK. Renal calcification incidence in very low birth weight infants. Pediatrics 1988; 81:31-35.PubMedGoogle Scholar
  103. 103.
    Saarela T, Lanning P, Koivisto M, Paavilainen T. Nephrocalcinosis in full-term infants receiving furosemide treatment for conges- tive heart failure: a study of the incidence and 2-year follow up. Eur J Pediatr 1999; 158:668-672.PubMedGoogle Scholar
  104. 104.
    Saarela T, Lanning P, Koivisto M. Prematurity-associated nephrocalcinosis and kidney function in early childhood. Pediatr Nephrol 1999; 13:886-890.PubMedGoogle Scholar
  105. 105.
    Pope, IV JC, Trusler LA, Klein AM, Walsh WF, Yared A, Brock, III JW. The natural history of nephrocalcinosis in premature infants treated with loop diuretics. J Urol 1996; 156:709-712.PubMedGoogle Scholar
  106. 106.
    Atkinson SA, Shah JK, McGee C, Steele BT. Mineral excretion in premature infants receiving various diuretic therapies. J Pediatr 1988; 113:540-545.PubMedGoogle Scholar
  107. 107.
    Cohanim M, Yendt ER. Reduction of urine oxalate during long-term thiazide therapy in patients with calcium urolithiasis. Invest Urol 1980; 18:170-173.PubMedGoogle Scholar
  108. 108.
    Constanzo LS, Weiner IM. On the hypercalciuric action of chorothiazide. J Clin Invest 1984; 54:628.Google Scholar
  109. 109.
    Campfield T, Braden G, Flynn-Valone P, Powell S. Effect of diuretics on urinary oxalate, calcium, and sodium excretion in very low birth weight infants. Pediatrics 1997; 99:814-818.PubMedGoogle Scholar
  110. 110.
    Puschett JB, O’Donovan R. Renal actions and uses of diuretics. In: Textbook of nephrology. Massry SG, Glassock RJ (editors). Williams & Wilkins, Baltimore.Google Scholar
  111. 111.
    Puschett JB, Rstegar A. Comparative study of the effects of metolazone and other diuretics on potassium excretion. Clin Phar- macol Ther 1973; 15:397-405.Google Scholar
  112. 112.
    Giebisch G. Effect of diuretics on renal transport of potassium. Methods Pharmacol 1976; 4A:121-164.Google Scholar
  113. 113.
    Wright FS, Giebesch G. Regulation of potassium excretion. In: the kidney physiology and pathophysiology. Seldin DW, Giebisch G (editors). Raven Press, New York; 1992:p. 2206-2247.Google Scholar
  114. 114.
    Lawson DH. Allergic reaction to potassium chloride. Q J Med 1974; 43:443-450.Google Scholar
  115. 115.
    Kassirer JP, Harrington JT. Diuretics and potassium metabolism: a reassessment of the need, effectiveness and safety of potas- sium therapy. Kidney Int 1977; 11:505-515.PubMedGoogle Scholar
  116. 116.
    Cremer W, Bock KD. Symptoms and course of chronic hypokalemic nephropathy in man. Clin Nephrol 1977; 7:112-119.PubMedGoogle Scholar
  117. 117.
    O’Donovan RA, Muhammedi M, Puschett JB. Diuretics in the therapy of hypertension: current status. Am J Med Sci 1992; 304:312- 318.PubMedCrossRefGoogle Scholar
  118. 118.
    Conn JW, Johnson RD. Kaliopenic nephropathy. Am J Clin Nutr 1956; 4:523-528.PubMedGoogle Scholar
  119. 119.
    Relman AS, Schwartz WB. The kidney in potassium depletion. Am J Med 1958; 24:764-773.PubMedGoogle Scholar
  120. 120.
    Cremer W, Blümcke S, Bock KD. Morphologie der kaliopenischen nephropathie beim menschen. Zentrabl Allg Path 1974; 118:481- 482.Google Scholar
  121. 121.
    Healy JJ, McKenna TJ, Canning B St J, Brien TG, Duffy GJ, Muldowney FP. Body composition changes in hypertensive subjects on long-term oral diuretic therapy. Brit Med J 1970; 1:716-719.PubMedGoogle Scholar
  122. 122.
    Marples D, Frøkiaer J, Dørup J, Knepper MA, Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest 1996; 97(8):1960-1968.PubMedGoogle Scholar
  123. 123.
    Mujais SK, Katz AI. Potassium deficiency. In: The kidney: physiology and pathophysiology. Seldin DW, Giebisch G (editors). Raven Press, New York 1992; p. 2249-2278.Google Scholar
  124. 124.
    Kirk KL, Schaefer JA. Water transport and osmoregulation by antidiuretic hormone in terminal nephron segments. In: The kidney: physiology and pathophysiology. Seldin DW, Giebisch G (editors). Raven Press, New York 1992; p. 1693-1725.Google Scholar
  125. 125.
    Orloff J. Handler JS. The similarity of effects of vasopressin adenosine-3’,5’-monophosphate (cyclic AMP) and theophylline on the toad bladder. J Clin Invest 1962; 41:702-709.PubMedGoogle Scholar
  126. 126.
    Zaman F, Pervez A, Abreo K. Isopropyl alcohol intoxication: a diagnostic challenge. Am J Kidney Dis 2002; 40(3):1-4.Google Scholar
  127. 127.
    Ashkar FS, Miller R. Hospital ketosis in the alcoholic diabetic: A syndrome due to isopropyl alcohol intoxication. South Med J 1971; 64:1409-1411.Google Scholar
  128. 128.
    Abramson S, Singh A. Treatment of the alcohol intoxications: Ethylene glycol, methanol and isoproranol. Curr Opin Nephrol Hypertens 2000; 9:695-701.PubMedGoogle Scholar
  129. 129.
    Adelson L. Fatal intoxication with isopropyl alcohol. Am J Clin Pathol 1962; 38:144-151.PubMedGoogle Scholar
  130. 130.
    Hawley PC, Falko JM. “Pseudo” renal failure after isopropyl alcohol intoxication. South Med J 1982; 75:630-631.PubMedGoogle Scholar
  131. 131.
    Winchester JF. Methanol, isopropyl alcohol, higher alcohols, ethylene glycol, cellosolves, acetone and oxalate. In: Clinical Manage- ment of Poisoning and Drug Overdose, 3rd edition. Haddad LM, Shannon MW, Winchester JF (editors). WB Saunders Company, Philadelphia 1998; p. 491-504.Google Scholar
  132. 132.
    Janzen IE, Dossetor JF, Seem CP. Model car fuel poisoning. Ann Clin Biochem 2005; 42(Pt 4):308-309.PubMedGoogle Scholar
  133. 133.
    Verhelst D, Moulin P, Haufroid V, Wittebole X, Jadoul M, Hantson P. Acute renal injury following methanol poisoning: analysis of a case series. Int J Toxicol 2004; 23:267-273.PubMedGoogle Scholar
  134. 134.
    Steinhart B. Case report: severe ethylene glycol intoxication with normal osmolal gap—“a chilling thought”. J Emerg Med 1990; 8:583.PubMedGoogle Scholar
  135. 135.
    Ammar KA, Heckerling PS. Ethylene glycol poisoning with a normal anion gap caused by concurrent ethanol ingestion: impor- tance of the osmolal gap. Am J Kidney Dis 1996; 27:130.PubMedGoogle Scholar
  136. 136.
    Purssell RA, Lynd LD, Koga Y. The use of the osmole gap as a screening test for the presence of exogenous substances. Toxicol Rev 2004; 23:189.PubMedGoogle Scholar
  137. 137.
    Liu JJ, Daya MR, Carrasquillo O, Kales SN. Prognostic factors in patients with methanol poisoning. J Toxicol Clin Toxicol 1998; 36:175-181.PubMedGoogle Scholar
  138. 138.
    Gosselin RE, Smith RP, Hodge HC (editors). Methyl alcohol. In: Clinical toxicology of commercial products, 5th ed. Williams & Wilkins, Baltimore 1984; p. 111-275.Google Scholar
  139. 139.
    Closs K, Solberg CO. Methanol poisoning. JAMA 1970; 211:497-499.PubMedGoogle Scholar
  140. 140.
    Erlanson PH, Fritz KE, Hagstam B, Liljenberg N, Tryding N, Voigt G. Severe methanol intoxication. Acta Med Scand 1965; 177:393- 407.PubMedGoogle Scholar
  141. 141.
    Gufferman SD, Alvarez M, Alvarez J. Methanol poisoning complicated by myoglobinuric renal failure. Am J Emerg Med 1985; 3:24-26.Google Scholar
  142. 142.
    Hoy WE, Scandling JD, Carbonneau RJ. Hemodialysis treatment of methanol intoxication. Artif Organs 1983; 7:479-481.PubMedGoogle Scholar
  143. 143.
    Friedlaender MM, Rosenmann E, Rubinger D, Silver J, Moskovici A, Dranitzki-Elhalel M, Popovtzer MM, Berlatzky Y, Eid A. Suc- cessful renal transplantation from two donors with methanol intoxication. Transplantation 1996; 61(10):1549-1552.PubMedGoogle Scholar
  144. 144.
    Davis DP, Bramwell KJ, Hamilton RS, Williams SR. Ethylene glycol poisoning: case report of a record-high level and review. J Emerg Med 1997; 15:653-67.PubMedGoogle Scholar
  145. 145.
    Barceloux DG, Krenzelok EP, Olson K, Watson W. American Academy of Clinical Toxicology practice guidelines on the treatment of ethylene glycol poinsoning. Ad Hoc Committee. J Toxicol Clin Toxicol 1999; 37:537-60.PubMedGoogle Scholar
  146. 146.
    Moreau C, Kerns II W, Tomaszewski CA, McMartin KE, Rose SR, Ford MD, Brent J, and the META study group. Glycolate kinetics and hemodialysis clearance in ethylene glycol poisoning. Clin Toxicol 1998; 36:659-666.Google Scholar
  147. 147.
    Corley RA, Meek ME, Carney EW. Mode of action: oxalate crystal-induced renal tubule degeneration and glycolic acid-induced dysmorphogenesis—renal and developmental effects of ethylene glycol. Crit Rev Toxicol 2005; 35:691-702.PubMedGoogle Scholar
  148. 148.
    Gabow PA, Clay K, Sullivan LB, Lepoff R. Organic acids in ethylene glycol intoxication. Ann Intern Med 1986; 105:16.PubMedGoogle Scholar
  149. 149.
    Guo C, McMartin KE. The cytotoxicity of oxalate, metabolite of ethylene glycol, is due to calcium oxalate monohydrate formation. Toxicology 2005; 208:347-355.PubMedGoogle Scholar
  150. 150.
    Poldelski V, Johnson A, Wright S, Dela Rosa V, Zager RA. Ethylene glycol-mediated tubular injury: identification of critical me- tabolites and injury pathways. Am J Kid Dis 2001; 38(2):339-348.PubMedGoogle Scholar
  151. 151.
    McMartin KE, Wallace KB. Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. Toxicol Sci 2005; 84:195-200.PubMedGoogle Scholar
  152. 152.
    Hess R, Bartels MJ, Pottenger LH. Ethylene glycol: and estimate of tolerable levels of exposure based on a review of animal and human data. Arch Toxicol 2004; 78:671-680.PubMedGoogle Scholar
  153. 153.
    Petersen CD, Collins AJ, Himes JM, Bullock ML, Keane WF. Ethylene glycol poisoning. N Engl J Med 1981; 304:21-23.CrossRefGoogle Scholar
  154. 154.
    Jacobsen D, McMartin KE. Methanol and ethylene glycol poisonings. Mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol 1986; 1:309.PubMedGoogle Scholar
  155. 155.
    Jacobsen D, Øvrebø S, Østborg J, Sejersted OM. Glycolate causes acidosis in ethylene glycol poisoning and is effectively removed by hemodialysis. Acta Med Scand 1984; 216:409-16.PubMedGoogle Scholar
  156. 156.
    Jacobsen D, McMartin KE. Antidotes for methanol and ethylene glycol poisoning. J Toxicol Clin Toxicol 1997; 35:127-43.PubMedGoogle Scholar
  157. 157.
    Brent J, McMartin KE, Phillips S, Burkhart KK, Donovan JW, Wells M, Kulig K. Fomepizole for the treatment of ethylene glycol poisoning. Methylpyrazone for the toxic alcohols study group. J Engl J Med 1999; 340(11):832-838.Google Scholar
  158. 158.
    Baud FJ, Galliot M, Astier A, Bien DV, Garnier R, Likforman J, Bismuth C. Treatment of ethylene glycol poisoning with intravenous 4-metylpyrazole. N Engl J Med 1988; 319(2):97-100.PubMedCrossRefGoogle Scholar
  159. 159.
    Jacobsen D, Hewlett TP, Webb R, Brown ST, Ordinario AT, McMartin KE. Ethylene glycol intoxication: evaluation of kinetics and crystalluria. Am J Med 1988; 84(1):145-52.PubMedGoogle Scholar
  160. 160.
    Sivilotti ML, Burns MJ, McMartin KE, Brent J. Toxicokinetics of ethylene glycol during fomepizole therapy: implications for man- agement. For the Methylpyrazole for Toxic Alcohols Study Group. Ann Emerg Med 2000; 36:114.PubMedGoogle Scholar
  161. 161.
    Borron SW, Mégarbane B, Baud FJ. Fomepizole in treatment of uncomplicated ethylene glycol poisoning. Lancet 1999; 354:831.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sheldon C. Chaffer
    • 1
  • Jules B. Puschett
    • 1
  1. 1.The Department of Medicine Division of Nephrology and HypertensionThe Texas A&M College of Medicine/Scott & White ClinicTempleUSA

Personalised recommendations