Amphotericin B

  • Nathalie K. Zgheib
  • Blair Capitano
  • Robert A. Branch

In recent years, systemic mycoses have become a prominent cause of disease particularly in severely ill and immunocompromised patients. The factors contributing to the increased prevalence of fungal infections are related to larger number of patients with underlying immunosuppression, for example the acquired immunodeficiency syndrome ( AIDS), more aggressive cancer chemotherapy, increase in transplantation, greater number of other immunocompromised patients, and more frequent use of prosthetic devices [1]. There have been a number of recent surveys, which illustrate the extent of this problem. The Center for Disease Control reported that among 51 USA hospitals, candidiasis was the eighth most common infection, accounting for 5% of the isolates [1, 2]. This value can be considerably higher in certain specific patient groups. The National Cancer Institute estimated that 43% of patients dying with acute leukemia had systemic fungal infection at autopsy [3]. In patients with AIDS, the most common fungal infection is oropharyngeal candidiasis. However, in these patients, the fungal infection with the highest mortality rate is cryptococcosis. It is evident that systemic fungal infection is an important consideration in the treatment of a severely ill, immunosuppressed patients [4].

Amphotericin B (AmB) has remained a mainstay of therapy for serious fungal infections since its introduction in 1956, owing to its broad spectrum of reliable activity and lack of availability of equally efficacious alternative agents [5]. The usefulness of this agent, however, is limited by the frequent occurrence of several acute and chronic adverse effects that often necessitate changes in, or premature discontinuation of, therapy. These include fever, chills, nausea, vomiting, anorexia, headache, bronchospasm, hypotension, anaphylaxis, and bone marrow suppression. The most limiting adverse effect, however, is nephrotoxicity [6- 11]. Several novel antifungal agents, found to be equally efficacious and less toxic as compared to AmB in clinical trials, have been introduced over the past several years. Thus, the role of AmB as the “gold standard” in the treatment of serious fungal infections is likely to be challenged and re-defined in the next decade [12].


Fungal Infection Antimicrob Agent High Density Lipoprotein Invasive Fungal Infection Liposomal Amphotericin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denning DW. Epidemiology and pathogenesis of systemic fungal infections in the immunocompromised host. J Antimicrob Chemother 1991;28 Suppl B:1-16.PubMedGoogle Scholar
  2. 2.
    Horan TC, White JW, Jarvis WR, et al. Nosocomial infection surveillance, 1984. MMWR CDC Surveill Summ 1986;35:17SS-29SS.PubMedGoogle Scholar
  3. 3.
    Bodey GP. Fungal infections complicating acute leukemia. J Chronic Dis 1966;19:667-87.PubMedGoogle Scholar
  4. 4.
    Hay RJ. Overview of the treatment of disseminated fungal infections. J Antimicrob Chemother 1991;28 Suppl B:17-25.PubMedGoogle Scholar
  5. 5.
    Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis 1990;12:308-29.PubMedGoogle Scholar
  6. 6.
    Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 1999;29:1402-7.PubMedGoogle Scholar
  7. 7.
    Pathak A, Pien FD, Carvalho L. Amphotericin B use in a community hospital, with special emphasis on side effects. Clin Infect Dis 1998;26:334-8.PubMedGoogle Scholar
  8. 8.
    Clements JS, Jr., Peacock JE, Jr. Amphotericin B revisited: reassessment of toxicity. Am J Med 1990;88:22N-7N.PubMedGoogle Scholar
  9. 9.
    Luber AD, Maa L, Lam M, Guglielmo BJ. Risk factors for amphotericin B-induced nephrotoxicity. J Antimicrob Chemother 1999;43:267-71.PubMedGoogle Scholar
  10. 10.
    Stein RS, Albridge K, Lenox RK, et al. Nephrotoxicity in leukemic patients receiving empirical amphotericin B and aminoglycosides. South Med J 1988;81:1095-9.PubMedGoogle Scholar
  11. 11.
    Harbarth S, Pestotnik SL, Lloyd JF, et al. The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med 2001;111:528-34.PubMedGoogle Scholar
  12. 12.
    Kleinberg M. What is the current and future status of conventional amphotericin B? Int J Antimicrob Agents 2006;27 Suppl 1:12-6.PubMedGoogle Scholar
  13. 13.
    Warnock DW. Amphotericin B: an introduction. J Antimicrob Chemother 1991;28 Suppl B:27-38.PubMedGoogle Scholar
  14. 14.
    Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 1990;34:183-8.PubMedGoogle Scholar
  15. 15.
    Brajtburg J, Elberg S, Schwartz DR, et al. Involvement of oxidative damage in erythrocyte lysis induced by amphotericin B. Antimicrob Agents Chemother 1985;27:172-6.PubMedGoogle Scholar
  16. 16.
    Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 1986;154:76-83.PubMedGoogle Scholar
  17. 17.
    Sabra R, Branch RA. Amphotericin B nephrotoxicity. Drug Saf 1990;5:94-108.PubMedGoogle Scholar
  18. 18.
    Butler WT, Bennett JE, Alling DW, et al. Nephrotoxicity of amphotericin B; early and late effects in 81 patients. Ann Intern Med 1964;61:175-87.PubMedGoogle Scholar
  19. 19.
    Medoff G, Kobayashi GS. Strategies in the treatment of systemic fungal infections. N Engl J Med 1980;302:145-55.PubMedGoogle Scholar
  20. 20.
    Miller RP, Bates JH. Amphotericin B toxicity. A follow-up report of 53 patients. Ann Intern Med 1969;71:1089-95.PubMedGoogle Scholar
  21. 21.
    Branch RA, Jackson EK, Jacqz E, et al. Amphotericin-B nephrotoxicity in humans decreased by sodium supplements with coad-ministration of ticarcillin or intravenous saline. Klin Wochenschr 1987;65:500-6.PubMedGoogle Scholar
  22. 22.
    Winn WA. Coccidioidomycosis and amphotericin B. Med Clin North Am 1963;47:1131-48.PubMedGoogle Scholar
  23. 23.
    Littman ML, Horowitz PL, Swadey JG. Coccidioidomycosis and its treatment with amphotericin B. Am J Med 1958;24:568-92.PubMedGoogle Scholar
  24. 24.
    Rubin SI, Krawiec DR, Gelberg H, Shanks RD. Nephrotoxicity of amphotericin B in dogs: a comparison of two methods of administration. Can J Vet Res 1989;53:23-8.PubMedGoogle Scholar
  25. 25.
    Saliba F. Antifungals and renal safety--getting the balance right. Int J Antimicrob Agents 2006;27 Suppl 1:21-4.PubMedGoogle Scholar
  26. 26.
    Girmenia C, Cimino G, Micozzi A, et al. Risk Factors For Nephrotoxicity Associated With Conventional Amphotericin B Therapy. The American Journal of Medicine 2002;113:351.PubMedGoogle Scholar
  27. 27.
    Gubbins PO, Penzak SR, Polston S, et al. Characterizing and predicting amphotericin B-associated nephrotoxicity in bone marrow or peripheral blood stem cell transplant recipients. Pharmacotherapy 2002;22:961-71.PubMedGoogle Scholar
  28. 28.
    Wasan KM, Brazeau GA, Keyhani A, et al. Roles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob Agents Chemother 1993;37:246-50.PubMedGoogle Scholar
  29. 29.
    Wasan KM, Rosenblum MG, Cheung L, Lopez-Berestein G. Influence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B. Antimicrob Agents Chemother 1994;38:223-7.PubMedGoogle Scholar
  30. 30.
    Wasan KM, Conklin JS. Enhanced amphotericin B nephrotoxicity in intensive care patients with elevated levels of low-density lipoprotein cholesterol. Clin Infect Dis 1997;24:78-80.PubMedGoogle Scholar
  31. 31.
    Wasan KM, Wong J, Corr T. Role of plasma lipids and lipoproteins in predicting amphotericin B-induced nephrotoxicity in pediatric oncology patients. Cancer Chemother Pharmacol 2006;57:120-4.PubMedGoogle Scholar
  32. 32.
    Holeman CW, Jr., Einstein H. The toxic effects of amphotericin B in man. Calif Med 1963;99:90-3.PubMedGoogle Scholar
  33. 33.
    Bullock WE, Luke RG, Nuttall CE, Bhathena D. Can mannitol reduce amphotericin B nephrotixicity? Double-blind study and description of a new vascular lesion in kidneys. Antimicrob Agents Chemother 1976;10:555-63.PubMedGoogle Scholar
  34. 34.
    Barbour GL, Straub KD, O’Neal BL, Leatherman JW. Vasopressin-resistant nephrogenic diabetes insipidus. A result of amphotericin B therapy. Arch Intern Med 1979;139:86-8.PubMedGoogle Scholar
  35. 35.
    Fisher MA, Talbot GH, Maislin G, et al. Risk factors for Amphotericin B-associated nephrotoxicity. Am J Med 1989;87:547-52.PubMedCrossRefGoogle Scholar
  36. 36.
    Rose BD. Hypokalemia. In: Rose BD, ed. Clinical Physiology of Acid-Base and Electrolyte Disorders. McGraw Hill, Inc., 1989:715-56.Google Scholar
  37. 37.
    Burgess JL, Birchall R. Nephrotoxicity of amphotericin B, with emphasis on changes in tubular function. Am J Med 1972;53:77-84.PubMedGoogle Scholar
  38. 38.
    Llanos A, Cieza J, Bernardo J, et al. Effect of salt supplementation on amphotericin B nephrotoxicity. Kidney Int 1991;40:302-8.PubMedGoogle Scholar
  39. 39.
    Sellin JH, De Soignie R. Ion transport in human colon in vitro. Gastroenterology 1987;93:441-8.PubMedGoogle Scholar
  40. 40.
    Bernardo JF, Murakami S, Branch RA, Sabra R. Potassium depletion potentiates amphotericin-B-induced toxicity to renal tubules. Nephron 1995;70:235-41.PubMedGoogle Scholar
  41. 41.
    Barton CH, Pahl M, Vaziri ND, Cesario T. Renal magnesium wasting associated with amphotericin B therapy. Am J Med 1984;77:471-4.PubMedGoogle Scholar
  42. 42.
    Douglas JB, Healy JK. Nephrotoxic effects of amphotericin B, including renal tubular acidosis. Am J Med 1969;46:154-62.PubMedGoogle Scholar
  43. 43.
    Steinmetz PR, Lawson LR. Defect in urinary acidification induced in vitro by amphotericin B. J Clin Invest 1970;49:596-601.PubMedGoogle Scholar
  44. 44.
    Gil FZ, Malnic G. Effect of amphotericin B on renal tubular acidification in the rat. Pflugers Arch 1989;413:280-6.PubMedGoogle Scholar
  45. 45.
    Gouge TH, Andriole VT. An experimental model of amphotericin B nephrotoxicity with renal tubular acidosis. J Lab Clin Med 1971;78:713-24.PubMedGoogle Scholar
  46. 46.
    McCurdy DK, Frederic M, Elkinton JR. Renal tubular acidosis due to amphotericin B. Clin Res 1964;12:471.Google Scholar
  47. 47.
    Takacs FJ, Tomkiewicz ZM, Merrill JP. Amphotercin B Nephrotoxicity with Irreversible Renal Failure. Ann Intern Med 1963;59:716-24.PubMedGoogle Scholar
  48. 48.
    Heyman SN, Stillman IE, Brezis M, et al. Chronic amphotericin nephropathy: morphometric, electron microscopic, and functional studies. J Am Soc Nephrol 1993;4:69-80.PubMedGoogle Scholar
  49. 49.
    Mayer J, Doubeck M, Doubeck J, et al. Reduced nephrotoxicity of conventional amphotericin B therapy after minimal nephroprotective measures: animal experiments and clinical study. J Am Soc Nephrol 2002.Google Scholar
  50. 50.
    Porter GA . Extrapolation of animal data to man : the concordance between toxicity screening and clincial con - sequence. In Nephrotoxicity in the experimental and clinical situation Part 2. Martinus Nijhoff Publishers. 1987. Ref Type: Music ScoreGoogle Scholar
  51. 51.
    Gruda I, Nadeau P, Brajtburg, Medoff G. Application of different spectra in the UV-visible region to study the formation of amphotericin. Biochem Biophys Res Commun 1980.Google Scholar
  52. 52.
    Vertut-Croquin A, Bolard J, Chabbert M, Gary-Bobo C. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Biochemistry 1983;22:2939-44.PubMedGoogle Scholar
  53. 53.
    Caltrider PG, Gottlieb D. Capacidin: a new member of the polyene antibiotic group. Antribiot Chemother 1961.Google Scholar
  54. 54.
    Kinsky SC. The effect of polyene antibiotics on permeability in Neurospora crassa. Biochem Biophys Res Commun 1961;4:353-7.PubMedGoogle Scholar
  55. 55.
    Kinsky SC. Alterations in the permeability of Neurospora crassa due to polyene antibiotics. J Bacteriol 1961;82:889-97.PubMedGoogle Scholar
  56. 56.
    Marini FP, Arnow P, Lampen JO. The effect of monovalent cations on the inhibition of yeast metabolism by nystain. J General Microbiol 1961.Google Scholar
  57. 57.
    Sutton DD, Arnow PM, Lampen JO. Effect of high concentrations of nystatin upon glycolysis and cellular permeability in yeast. Proc Soc Exp Biol Med 1961;108:170-5.PubMedGoogle Scholar
  58. 58.
    Gottlieb D, Carter HE, Sloneker JH, Ammann A. Protection of fungi against polyene antibiotics by sterols. Science 1958;128:361.PubMedGoogle Scholar
  59. 59.
    Kotler-Brajtburg J, Price HD, Medoff G, et al. Molecular basis for the selective toxicity of amphotericin B for yeast and filipin for animal cells. Antimicrob Agents Chemother 1974;5:377-82.PubMedGoogle Scholar
  60. 60.
    Andreoli TE. On the anatomy of amphotericin B-cholesterol pores in lipid bilayer membranes. Kidney Int 1973;4:337-45.PubMedGoogle Scholar
  61. 61.
    DeKruijiff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplesma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochem Biophys Acta 1974;339:57-70.Google Scholar
  62. 62.
    Holz RW. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 1974;235:469-79.PubMedGoogle Scholar
  63. 63.
    Gatzy JT, Reuss L, Finn AL. Amphotericin B and K+ transport across excised toad urinary bladder. Am J Physiol 1979;237:F145-F156.PubMedGoogle Scholar
  64. 64.
    Lichtenstein NS, Leaf A. Effect of amphotericin B on the permeability of the toad bladder. J Clin Invest 1965;44:1328-42.PubMedGoogle Scholar
  65. 65.
    Lichtenstein NS, Leaf A. Evidence for a double series permeability barrier at the mucosal surface of the toad bladder. Ann N Y Acad Sci 1966;137:556-65.PubMedGoogle Scholar
  66. 66.
    Teerlink T, de Kruijff B, Demel RA. The action of pimaricin, etruscomycin and amphotericin B on liposomes with varying sterol content. Biochim Biophys Acta 1980;599:484-92.PubMedGoogle Scholar
  67. 67.
    Butler WT, Alling DW, Cotlove E. Potassium loss from human erythrocytes exposed to amphotericin B. Proc Soc Exp Biol Med 1965;118:297-300.PubMedGoogle Scholar
  68. 68.
    Kinsky SC. Comparative responses of mammalian erythrocytes and microbial protoplasts to polyene antibiotics and vitamin A. Arch Biochem Biophys 1963;102:180-8.PubMedGoogle Scholar
  69. 69.
    Kinsky SC, Avruch J, Permutt M, Rogers HB. The lytic effect of polyene antifungal antibiotics on mammalian erythrocytes. Biochem Biophys Res Commun 1962;9:503-7.PubMedGoogle Scholar
  70. 70.
    Finn JT, Cohen LH, Steinmetz PR. Acidifying defect induced by amphotericin B: comparison of bicarbonate and hydrogenion permeabilities. Kidney Int 1977;11:261-6.PubMedGoogle Scholar
  71. 71.
    Capasso G, Schuetz H, Vickermann B, Kinne R. Amphotericin B and amphotericin B methylester: effect on brush border membrane permeability. Kidney Int 1986;30:311-7.PubMedGoogle Scholar
  72. 72.
    Schell RE, Tran NV, Bramhall JS. Amphotericin B-induced changes in renal membrane permeation: a model of nephrotoxicity. Biochem Biophys Res Commun 1989;159:1165-70.PubMedGoogle Scholar
  73. 73.
    Hoeprich PD. Chemotherapy of systemic fungal diseases. Annu Rev Pharmacol Toxicol 1978;18:205-31.PubMedGoogle Scholar
  74. 74.
    Joly V, Saint-Pierre-Chazalet M, Saint-Julien L, et al. Inhibiting cholesterol synthesis reduces the binding and toxicity of amphotericin B against rabbit renal tubular cells in primary culture. J Infect Dis 1992;165:337-43.PubMedGoogle Scholar
  75. 75.
    Cheng JT, Witty RT, Robinson RR, Yarger WE. Amphotericin B nephrotoxicity: increased renal resistance and tubule permeability. Kidney Int 1982;22:626-33.PubMedGoogle Scholar
  76. 76.
    Varlam DE, Siddiq MM, Parton LA, Russmann H. Apoptosis contributes to amphotericin B-induced nephrotoxicity. Antimicrob Agents Chemother 2001;45:679-85.PubMedGoogle Scholar
  77. 77.
    Zager RA. Polyene antibiotics: relative degrees of in vitro cytotoxicity and potential effects on tubule phospholipid and ceramide content. Am J Kidney Dis 2000;36:238-49.PubMedGoogle Scholar
  78. 78.
    Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000;10:73-80.PubMedGoogle Scholar
  79. 79.
    Lamy-Fruend MT, Ferreira VFN, Schreier S. Mechanism of inactivation of the polyene antibiotic amphotericin B. J Antibiot (Tokyo) 1985.Google Scholar
  80. 80.
    Osaka K, Tyurina YY, Dubey RK, et al. Amphotericin B as an intracellular antioxidant: protection against 2, 2’-azobis(2, 4-dimethylvaleronitrile)-induced peroxidation of membrane phospholipids in rat aortic smooth muscle cells. Biochem Pharmacol 1997;54:937-45.PubMedGoogle Scholar
  81. 81.
    Osaka K, Ritov VB, Bernardo JF, et al. Amphotericin B protects cis-parinaric acid against peroxyl radical-induced oxidation: amphotericin B as an antioxidant. Antimicrob Agents Chemother 1997;41:743-7.PubMedGoogle Scholar
  82. 82.
    Walev I, Bhakdi S. Possible reason for preferential damage to renal tubular epithelial cells evoked by amphotericin B. Antimicrob Agents Chemother 1996;40:1116-20.PubMedGoogle Scholar
  83. 83.
    Butler WT, Hill GJ, Szwed CF, Knight V. Amphotericin B renal toxicity in the dog. J Pharmacol Exp Ther 1964;143:47-56.PubMedGoogle Scholar
  84. 84.
    Gerkens JF, Heidemann HT, Jackson EK, Branch RA. Aminophylline inhibits renal vasoconstriction produced by intrarenal hypertonic saline. J Pharmacol Exp Ther 1983;225:611-5.PubMedGoogle Scholar
  85. 85.
    Heidemann HT, Gerkens JF, Jackson EK, Branch RA. Effect of aminophylline on renal vasoconstriction produced by amphotericin B in the rat. Naunyn Schmiedebergs Arch Pharmacol 1983;324:148-52.PubMedGoogle Scholar
  86. 86.
    Sabra R, Takahashi K, Branch RA, Badr KF. Mechanisms of amphotericin B-induced reduction of the glomerular filtration rate: a micropuncture study. J Pharmacol Exp Ther 1990;253:34-7.PubMedGoogle Scholar
  87. 87.
    Tolins JP, Raij L. Adverse effect of amphotericin B administration on renal hemodynamics in the rat. Neurohumoral mechanisms and influence of calcium channel blockade. J Pharmacol Exp Ther 1988;245:594-9.PubMedGoogle Scholar
  88. 88.
    Sabra R, Zeinoun N, Sharaf LH, et al. Role of humoral mediators in, and influence of a liposomal formulation on, acute amphotericin B nephrotoxicity. Pharmacol Toxicol 2001;88:168-75.PubMedGoogle Scholar
  89. 89.
    Cutaia M, Bullard SR, Rudio K, Rounds S. Characteristics of amphotericin B-induced endothelial cell injury. J Lab Clin Med 1993;121:244-56.PubMedGoogle Scholar
  90. 90.
    Heyman SN, Clark BA, Kaiser N, et al. In-vivo and in-vitro studies on the effect of amphotericin B on endothelin release. J Antimicrob Chemother 1992;29:69-77.PubMedGoogle Scholar
  91. 91.
    Branch RA. Prevention of amphotericin B-induced renal impairment. A review on the use of sodium supplementation. Arch Intern Med 1988;148:2389-94.PubMedGoogle Scholar
  92. 92.
    Schnermann J. Regulation of single nephron filtration rate by feedback-facts and theories. Clin Nephrol 1975;3:75-81.PubMedGoogle Scholar
  93. 93.
    Thurau K. Modification of angiotensin-mediated tubulo-glomerular feedback by extracellular volume. Kidney Int Suppl 1975;S202-S207.Google Scholar
  94. 94.
    Wright FS, Schnermann J. Interference with feedback control of glomerular filtration rate by furosemide, triflocin, and cyanide. J Clin Invest 1974;53:1695-708.PubMedGoogle Scholar
  95. 95.
    Gerkens JF, Branch RA. The influence of sodium status and furosemide on canine acute amphotericin B nephrotoxicity. J Pharmacol Exp Ther 1980;214:306-11.PubMedGoogle Scholar
  96. 96.
    Ohnishi A, Ohnishi T, Stevenhead W, et al. Sodium status influences chronic amphotericin B nephrotoxicity in rats. Antimicrob Agents Chemother 1989;33:1222-7.PubMedGoogle Scholar
  97. 97.
    Tolins JP, Raij L. Chronic amphotericin B nephrotoxicity in the rat: protective effect of calcium channel blockade. J Am Soc Nephrol 1991;2:98-102.PubMedGoogle Scholar
  98. 98.
    Tolins JP, Raij L. Chronic amphotericin B nephrotoxicity in the rat, protective effect of prophylactic salt loading. Am J Kidney Dis 1988;11:313-7.PubMedGoogle Scholar
  99. 99.
    Heidemann HT, Bolten M, Inselmann G. Effect of chronic theophylline administration on amphotericin B nephrotoxicity in rats. Nephron 1991;59:294-8.PubMedGoogle Scholar
  100. 100.
    Wasan KM, Vadiei K, Lopez-Berestein G, et al. Pentoxifylline in amphotericin B toxicity rat model. Antimicrob Agents Chemother 1990;34:241-4.PubMedGoogle Scholar
  101. 101.
    Luke DR, Wasan KM, Verani RR, et al. Attenuation of amphotericin-B nephrotoxicity in the candidiasis rat model. Nephron 1991;59:139-44.PubMedGoogle Scholar
  102. 102.
    Kuan CJ, Branch RA, Jackson EK. Effect of an adenosine receptor antagonist on acute amphotericin B nephrotoxicity. Eur J Pharmacol 1990;178:285-91.PubMedGoogle Scholar
  103. 103.
    Sawaya BP, Weihprecht H, Campbell WR, et al. Direct vasoconstriction as a possible cause for amphotericin B-induced nephrotoxicity in rats. J Clin Invest 1991;87:2097-107.PubMedGoogle Scholar
  104. 104.
    Hardie W, Ebert J, Takahashi K, Badr KF. Thromboxane A2 receptor antagonism reverses amphotericin B-induced renal vasoconstricition in the rat. Prostaglandins 2007.Google Scholar
  105. 105.
    Sabra R, Branch RA. Effect of amphotericin B on intracellular calcium levels in cultured glomerular mesangial cells. Eur J Pharmacol 1992;226:79-85.PubMedGoogle Scholar
  106. 106.
    Soupart A, Decaux G. Nifedipine and amphotericin B nephrotoxicity in the rat. Nephron 1989;52:278-80.PubMedGoogle Scholar
  107. 107.
    Heidemann HT, Brune KH, Sabra R, Branch RA. Acute and chronic effects of flucytosine on amphotericin B nephrotoxicity in rats. Antimicrob Agents Chemother 1992;36:2670-5.PubMedGoogle Scholar
  108. 108.
    Brezis M, Rosen S, Silva P, et al. Polyene toxicity in renal medulla: injury mediated by transport activity. Science 1984;224:66-8.PubMedGoogle Scholar
  109. 109.
    UTZ JP. Chemotherapy of the systemic mycoses. Med Clin North Am 1982;66:221-33.PubMedGoogle Scholar
  110. 110.
    Hellesbusch AA, Salama F, Eadie E. The use of mannitol to reduce the toxicity of amphotericin B. Surg Gynecol Obstet 1972.Google Scholar
  111. 111.
    Olivero JJ, Lozano-Mendez J, Ghafary EM, et al. Mitigation of amphotericin B nephrotoxicity by mannitol. Br Med J 1975;1:550-1.PubMedGoogle Scholar
  112. 112.
    Rosch JM, Pazin GJ, Fireman P. Reduction of amphotericin B nephrotoxicity with mannitol. JAMA 1976;235:1995-6.PubMedGoogle Scholar
  113. 113.
    Said R, Marin P, Anicama H, et al. Effect of mannitol on acute amphotericin B nephrotoxicity. Res Exp Med (Berl) 1980;177:85-9.Google Scholar
  114. 114.
    Ural AU, Avcu F, Cetin T, et al. Spironolactone: is it a novel drug for the prevention of amphotericin B-related hypokalemia in cancer patients? Eur J Clin Pharmacol 2002;57:771-3.PubMedGoogle Scholar
  115. 115.
    Eriksson U, Seifert B, Schaffner A. Comparison of effects of amphotericin B deoxycholate infused over 4 or 24 hours: randomised controlled trial. BMJ 2001;322:579-82.PubMedGoogle Scholar
  116. 116.
    Heidemann HT, Gerkens JF, Spickard WA, et al. Amphotericin B nephrotoxicity in humans decreased by salt repletion. Am J Med 1983;75:476-81.PubMedGoogle Scholar
  117. 117.
    Holler B, Omar S, Farid M, Patterson Jevitz M. Effect of Fluid and Electrolyte Management on Amphotericin B-Induced Nephrotoxicity Among Extremely Low Birth Weight Infants. Pediatrics 2004;113.Google Scholar
  118. 118.
    Girmenia C, Cimino G, Di CF, et al. Effects of hydration with salt repletion on renal toxicity of conventional amphotericin B empirical therapy: a prospective study in patients with hematological malignancies. Support Care Cancer 2005;13:987-92.PubMedGoogle Scholar
  119. 119.
    Mayer J, Doubek M, Vorlicek J. Must we really fear toxicity of conventional amphotericin B in oncological patients? Support Care Cancer 1999;7:51-5.PubMedGoogle Scholar
  120. 120.
    Oto OA, Paydas S, Disel U, et al. Amphotericin B deoxycholate (d-AMB) use in cases with febrile neutropenia and fungal infections: lower toxicity with suitable premedication. Mycoses 2007;50:135-9.PubMedGoogle Scholar
  121. 121.
    Echevarria J, Seas C, Cruz M, et al. Oral rehydration solution to prevent nephrotoxicity of amphotericin B. Am J Trop Med Hyg 2006;75:1108-12.PubMedGoogle Scholar
  122. 122.
    Speich R, Dutly A, Naef R, et al. Tolerability, safety and efficacy of conventional amphotericin B administered by 24-hour infusion to lung transplant recipients. Swiss Med Wkly 2002;132:455-8.PubMedGoogle Scholar
  123. 123.
    Uehara RP, Sa VH, Koshimura ET, et al. Continuous infusion of amphotericin B: preliminary experience at Faculdade de Medicina da Fundacao ABC. Sao Paulo Med J 2005;123:219-22.PubMedGoogle Scholar
  124. 124.
    Furrer K, Schaffner A, Vavricka SR, et al. Nephrotoxicity of cyclosporine A and amphotericin B-deoxycholate as continuous infusion in allogenic stem cell transplantation. Swiss Med Wkly 2002;132:316-20.PubMedGoogle Scholar
  125. 125.
    Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother 2001;45:922-6.PubMedGoogle Scholar
  126. 126.
    Andes D. Clinical pharmacodynamics of antifungals. Infect Dis Clin North Am 2003;17:635-49.PubMedGoogle Scholar
  127. 127.
    Lewis RE, Wiederhold NP, Prince RA, Kontoyiannis DP. In vitro pharmacodynamics of rapid versus continuous infusion of ampho tericin B deoxycholate against Candida species in the presence of human serum albumin. J Antimicrob Chemother 2006;57:288-93.PubMedGoogle Scholar
  128. 128.
    Lopez-Berestein G, Fainstein V, Hopfer R, et al. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis 1985;151:704-10.PubMedGoogle Scholar
  129. 129.
    Gates C, Pinney RJ. Amphotericin B and its delivery by liposomal and lipid formulations. J Clin Pharm Ther 1993;18:147-53.PubMedGoogle Scholar
  130. 130.
    Chavanet PY, Garry I, Charlier N, et al. Trial of glucose versus fat emulsion in preparation of amphotericin for use in HIV infected patients with candidiasis. BMJ 1992;305:921-5.PubMedGoogle Scholar
  131. 131.
    Barquist E, Fein E, Shadick D, et al. A randomized prospective trial of amphotericin B lipid emulsion versus dextrose colloidal solution in critically ill patients. J Trauma 1999;47:336-40.PubMedGoogle Scholar
  132. 132.
    Nucci M, Loureiro M, Silveira F, et al. Comparison of the toxicity of amphotericin B in 5% dextrose with that of amphotericin B in fat emulsion in a randomized trial with cancer patients. Antimicrob Agents Chemother 1999;43:1445-8. PubMedGoogle Scholar
  133. 133.
    Caillot D, Reny G, Solary E, et al. A controlled trial of the tolerance of amphotericin B infused in dextrose or in Intralipid in patients with haematological malignancies. J Antimicrob Chemother 1994;33:603-13.PubMedGoogle Scholar
  134. 134.
    Friedlich PS, Steinberg I, Fujitani A, deLemos RA. Renal tolerance with the use of intralipid-amphotericin B in low-birth-weight neonates. Am J Perinatol 1997;14:377-83.PubMedGoogle Scholar
  135. 135.
    Sorkine P, Nagar H, Weinbroum A, et al. Administration of amphotericin B in lipid emulsion decreases nephrotoxicity: results of a prospective, randomized, controlled study in critically ill patients. Crit Care Med 1996;24:1311-5.PubMedGoogle Scholar
  136. 136.
    Nath CE, Shaw PJ, Gunning R, et al. Amphotericin B in children with malignant disease: a comparison of the toxicities and pharmacokinetics of amphotericin B administered in dextrose versus lipid emulsion. Antimicrob Agents Chemother 1999;43:1417-23.PubMedGoogle Scholar
  137. 137.
    Torre D, Banfi G, Tambini R, et al. A retrospective study on the efficacy and safety of amphotericin B in a lipid emulsion for the treatment of cryptococcal meningitis in AIDS patients. J Infect 1998;37:36-8.PubMedGoogle Scholar
  138. 138.
    Sievers TM, Kubak BM, Wong-Beringer A. Safety and efficacy of Intralipid emulsions of amphotericin B. J Antimicrob Chemother 1996;38:333-47.PubMedGoogle Scholar
  139. 139.
    Janknegt R, de Marie S, Bakker-Woudenberg IA, Crommelin DJ. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet 1992;23:279-91.PubMedGoogle Scholar
  140. 140.
    Gregoriadis G. Overview of liposomes. J Antimicrob Chemother 1991;28 Suppl B:39-48.PubMedGoogle Scholar
  141. 141.
    Joly V, Saint-Julien L, Carbon C, Yeni P. Interactions of free and liposomal amphotericin B with renal proximal tubular cells in primary culture. J Pharmacol Exp Ther 1990;255:17-22.PubMedGoogle Scholar
  142. 142.
    Payne NI, Cosgrove RF, Green AP, Liu L. In-vivo studies of amphotericin B liposomes derived from proliposomes: effect of formulation on toxicity and tissue disposition of the drug in mice. J Pharm Pharmacol 1987;39:24-8.PubMedGoogle Scholar
  143. 143.
    Payne NI, Cosgrove RF, Green AP, Liu L. In-vivo studies of amphotericin B liposomes derived from proliposomes: effect of formulation on toxicity and tissue disposition of the drug in mice. J Pharm Pharmacol 1987;39:24-8.PubMedGoogle Scholar
  144. 144.
    Szoka FC, Jr., Milholland D, Barza M. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob Agents Chemother 1987;31:421-9.PubMedGoogle Scholar
  145. 145.
    Juliano RL, Grant CW, Barber KR, Kalp MA. Mechanism of the selective toxicity of amphotericin B incorporated into liposomes. Mol Pharmacol 1987;31:1-11.PubMedGoogle Scholar
  146. 146.
    Clemons KV, Stevens DA. Comparative efficacy of amphotericin B colloidal dispersion and amphotericin B deoxycholate suspension in treatment of murine coccidioidomycosis. Antimicrob Agents Chemother 1991;35:1829-33.PubMedGoogle Scholar
  147. 147.
    Hostetler JS, Clemons KV, Hanson LH, Stevens DA. Efficacy and safety of amphotericin B colloidal dispersion compared with those of amphotericin B deoxycholate suspension for treatment of disseminated murine cryptococcosis. Antimicrob Agents Chemother 1992;36:2656-60.PubMedGoogle Scholar
  148. 148.
    Proffitt RT, Satorius A, Chiang SM, et al. Pharmacology and toxicology of a liposomal formulation of amphotericin B (AmBisome) in rodents. J Antimicrob Chemother 1991;28 Suppl B:49-61.PubMedGoogle Scholar
  149. 149.
    Ralph ED, Khazindar AM, Barber KR, Grant CW. Comparative in vitro effects of liposomal amphotericin B, amphotericin B-deoxycholate, and free amphotericin B against fungal strains determined by using MIC and minimal lethal concentration susceptibility studies and time-kill curves. Antimicrob Agents Chemother 1991;35:188-91.PubMedGoogle Scholar
  150. 150.
    Anaissie E, Paetznick V, Proffitt R, et al. Comparison of the in vitro antifungal activity of free and liposome-encapsulated amphotericin B. Eur J Clin Microbiol Infect Dis 1991;10:665-8.PubMedGoogle Scholar
  151. 151.
    Krause HJ, Juliano RL. Interaction of liposome-incorporated amphotericin B with kidney epithelial cell structures. Mol Pharmacol 1987.Google Scholar
  152. 152.
    Joly V, Dromer F, Barge J, et al. Incorporation of amphotericin B (AMB) into liposomes alters AMB-induced acute nephrotoxicity in rabbits. J Pharmacol Exp Ther 1989;251:311-6.PubMedGoogle Scholar
  153. 153.
    Longuet P, Joly V, Amirault P, et al. Limited protection by small unilamellar liposomes against the renal tubular toxicity induced by repeated amphotericin B infusions in rats. Antimicrob Agents Chemother 1991;35:1303-8.PubMedGoogle Scholar
  154. 154.
    Gondal JA, Swartz RP, Rahman A. Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother 1989;33:1544-8.PubMedGoogle Scholar
  155. 155.
    Lopez-Berestein G, Mehta R, Hopfer RL, et al. Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposome-encapsulated amphotericin B. J Infect Dis 1983;147:939-45.PubMedGoogle Scholar
  156. 156.
    Lopez-Berestein G, Bodey GP, Frankel LS, Mehta K. Treatment of hepatosplenic candidiasis with liposomal-amphotericin B. J Clin Oncol 1987;5:310-7.PubMedGoogle Scholar
  157. 157.
    Lopez-Berestein G. Liposomes as carriers of antifungal drugs. Ann N Y Acad Sci 1988;544:590-7.PubMedGoogle Scholar
  158. 158.
    Lopez-Berestein G, Bodey GP, Fainstein V, et al. Treatment of systemic fungal infections with liposomal amphotericin B. Arch Intern Med 1989;149:2533-6.PubMedGoogle Scholar
  159. 159.
    Meunier F, Sculier JP, Coune A, et al. Amphotericin B encapsulated in liposomes administered to cancer patients. Ann N Y Acad Sci 1988;544:598-610.PubMedGoogle Scholar
  160. 160.
    Llanos-Cuentas, A., Chang J, Cieza J, Echevarria J, Garcia P, and Lentnek A. Safety and tolerance of amphotericin B lipid complex vs Fungizone in patients with mucocuntaneous leishmaniasis. Antimicrob Agents Chemother. 1990. Ref Type: Electronic CitationGoogle Scholar
  161. 161.
    Meunier F, Prentice HG, Ringden O. Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 1991;28 Suppl B:83-91.Google Scholar
  162. 162.
    Ringden O, Meunier F, Tollemar J, et al. Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother 1991;28 Suppl B:73-82.PubMedGoogle Scholar
  163. 163.
    Taylor RL, Williams DM, Craven PC, et al. Amphotericin B in liposomes: a novel therapy for histoplasmosis. Am Rev Respir Dis 1982;125:610-1.PubMedGoogle Scholar
  164. 164.
    Meunier F. New methods for delivery of antifungal agents. Rev Infect Dis 1989;11 Suppl 7:S1605-S1612.PubMedGoogle Scholar
  165. 165.
    Graybill JR, Craven PC, Taylor RL, et al. Treatment of murine cryptococcosis with liposome-associated amphotericin B. J Infect Dis 1982;145:748-52.PubMedGoogle Scholar
  166. 166.
    Wasan KM, Lopez-Berestein G. Modification of amphotericin B’s therapeutic index by increasing its association with serum high density lipoproteins. Ann N Y Acad Sci 1994;730:93-106.PubMedGoogle Scholar
  167. 167.
    Olsen SJ, Swerdel MR, Blue B, et al. Tissue distribution of amphotericin B lipid complex in laboratory animals. J Pharm Pharmacol 1991;43:831-5.PubMedGoogle Scholar
  168. 168.
    Poste G. Liposome targetting in vivo: problems and opportunites. Biol Cell 1983.Google Scholar
  169. 169.
    Doubek M, Mayer J, Lauschova I, et al. Comparison of the effect of amphotericin B desoxycholate and amphotericin B colloidal dispersion on renal functions and renal morphology in rats. Nephrology (Carlton ) 2005;10:57-62.Google Scholar
  170. 170.
    Krejcirova L, Lauschova I, Horky D, et al. Influence of amphotericin B deoxycholate or amphotericin B colloidal dispersion on renal tubule epithelium in rat. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2004;148:221-3. PubMedGoogle Scholar
  171. 171.
    Simitsopoulou M, Roilides E, Dotis J, et al. Differential expression of cytokines and chemokines in human monocytes induced by lipid formulations of amphotericin B. Antimicrob Agents Chemother 2005;49:1397-403.PubMedGoogle Scholar
  172. 172.
    Carriagan C, Hanf-Kristufek. Comparison of amphotericin B products. BMJ 2001.Google Scholar
  173. 173.
    Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol 2005;68:151-62.PubMedGoogle Scholar
  174. 174.
    Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 1998;27:603-18.PubMedGoogle Scholar
  175. 175.
    Deray G. Amphotericin B nephrotoxicity. Journal of Antimicrobial Chemotherapy 2002;49:37-41.PubMedGoogle Scholar
  176. 176.
    Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents 2001;17:161-9.PubMedGoogle Scholar
  177. 177.
    Costa S, Nucci M. Can we decrease amphotericin nephrotoxicity? Curr Opin Crit Care 2001;7:379-83.PubMedGoogle Scholar
  178. 178.
    Blau IW, Fauser AA. Review of comparative studies between conventional and liposomal amphotericin B (Ambisome) in neutropenic patients with fever of unknown origin and patients with systemic mycosis. Mycoses 2000;43:325-32.PubMedGoogle Scholar
  179. 179.
    Veerareddy PR, Vobalaboina V. Lipid-based formulations of amphotericin B. Drugs Today (Barc ) 2004;40:133-45.Google Scholar
  180. 180.
    Bowden R, Chandrasekar P, White MH, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis 2002;35:359-66.PubMedGoogle Scholar
  181. 181.
    Anaissie EJ, Vadhan-Raj S. Is it time to redefine the management of febrile neutropenia in cancer patients? Am J Med 1995;98:221-3.PubMedGoogle Scholar
  182. 182.
    Leenders AC, Daenen S, Jansen RL, et al. Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol 1998;103:205-12.PubMedGoogle Scholar
  183. 183.
    White MH, Bowden RA, Sandler ES, et al. Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. am photericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 1998;27:296-302.PubMedGoogle Scholar
  184. 184.
    Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 1999;340:764-71.PubMedGoogle Scholar
  185. 185.
    Walsh TJ, Pappas P, Winston DJ, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med 2002;346:225-34.PubMedGoogle Scholar
  186. 186.
    Prentice HG, Hann IM, Herbrecht R, et al. A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol 1997;98:711-8.PubMedGoogle Scholar
  187. 187.
    Walsh TJ, Seibel NL, Arndt C, et al. Amphotericin B lipid complex in pediatric patients with invasive fungal infections. Pediatr Infect Dis J 1999;18:702-8.PubMedGoogle Scholar
  188. 188.
    Sandler ES, Mustafa MM, Tkaczewski I, et al. Use of amphotericin B colloidal dispersion in children. J Pediatr Hematol Oncol 2000;22:242-6.PubMedGoogle Scholar
  189. 189.
    Timmers GJ, Zweegman S, Simoons-Smit AM, et al. Amphotericin B colloidal dispersion (Amphocil) vs fluconazole for the prevention of fungal infections in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transplant 2000;25:879-84.PubMedGoogle Scholar
  190. 190.
    Johnson JR. Voriconazole versus liposomal amphotericin B for empirical antifungal therapy. N Engl J Med 2002;346:1745-7.PubMedGoogle Scholar
  191. 191.
    Sharkey PK, Graybill JR, Johnson ES, et al. Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis 1996;22:315-21.PubMedGoogle Scholar
  192. 192.
    Chandrasekar P. The experience is CLEAR. Int J Antimicrob Agents 2006;27 Suppl 1:31-5.PubMedGoogle Scholar
  193. 193.
    Slain D, Miller K, Khakoo R, et al. Infrequent occurrence of amphotericin B lipid complex-associated nephrotoxicity in various clinical settings at a university hospital: a retrospective study. Clin Ther 2002;24:1636-42.PubMedGoogle Scholar
  194. 194.
    Aguado JM, Lumbreras C, Gonzalez-Vidal D. Assessment of nephrotoxicity in patients receiving amphotericin B lipid complex: a pharmacosurveillance study in Spain. Clin Microbiol Infect 2004;10:785-90.PubMedGoogle Scholar
  195. 195.
    Alexander BD, Wingard JR. Study of renal safety in amphotericin B lipid complex-treated patients. Clin Infect Dis 2005;40 Suppl 6:S414-S421.PubMedGoogle Scholar
  196. 196.
    Wingard JR, White MH, Anaissie E, et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 2000;31:1155-63.PubMedGoogle Scholar
  197. 197.
    Winston DJ, Schiller GJ. Controlled trials of amphotericin B lipid complex and other lipid-associated formulations. Clin Infect Dis 2000;30:236-7.PubMedGoogle Scholar
  198. 198.
    Cannon JP, Garey KW, Danziger LH. A prospective and retrospective analysis of the nephrotoxicity and efficacy of lipid-based amphotericin B formulations. Pharmacotherapy 2001;21:1107-14.PubMedGoogle Scholar
  199. 199.
    Miller CB, Waller EK, Klingemann HG, et al. Lipid formulations of amphotericin B preserve and stabilize renal function in HSCT recipients. Bone Marrow Transplant 2004;33:543-8.PubMedGoogle Scholar
  200. 200.
    Subira M, Martino R, Gomez L, et al. Low-dose amphotericin B lipid complex vs. conventional amphotericin B for empirical anti-fungal therapy of neutropenic fever in patients with hematologic malignancies--a randomized, controlled trial. Eur J Haematol 2004;72:342-7.PubMedGoogle Scholar
  201. 201.
    Martino R, Cortes M, Subira M, et al. Efficacy and toxicity of intermediate-dose amphotericin B lipid complex as a primary or salvage treatment of fungal infections in patients with hematological malignancies. Leuk Lymphoma 2005;46:1429-35.PubMedGoogle Scholar
  202. 202.
    Cesaro S, Zignol M, Burlina AB, et al. Assessment of nephrotoxicity of high-cumulative dose of liposomal amphotericin B in a pediatric patient who underwent allogenic bone marrow transplantation. Pediatric Transplantation 2006;10:255-8.PubMedGoogle Scholar
  203. 203.
    Johansen HK, Gotzsche PC. Amphotericin B lipid soluble formulations vs amphotericin B in cancer patients with neutropenia. Cochrane Database Syst Rev 2000;CD000969.Google Scholar
  204. 204.
    Barrett JP, Vardulaki KA, Conlon C, et al. A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther 2003;25:1295-320.PubMedGoogle Scholar
  205. 205.
    Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard”. Clin Infect Dis 2003;37:415-25.PubMedGoogle Scholar
  206. 206.
    Johnson JR. Reduction of nephrotoxicity associated with amphotericin B deoxycholate. Clin Infect Dis 2004;38:303-7.PubMedGoogle Scholar
  207. 207.
    Schneemann M, Bachli EB. Continuous infusion of amphotericin B deoxycholate: a cost-effective gold standard for therapy of invasive fungal infections? Clin Infect Dis 2004;38:303-4.PubMedGoogle Scholar
  208. 208.
    Spellberg B, Witt MD, Beck CK. Amphotericin B: is a lipid-formulation gold standard feasible? Clin Infect Dis 2004;38:304-5.PubMedGoogle Scholar
  209. 209.
    Powers JH, Albrecht R. Lipid amphotericin B formulations as comparators in clinical trials. Clin Infect Dis 2004;38:305-6.PubMedGoogle Scholar
  210. 210.
    Bates DW, Su L, Yu DT, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 2001;32:686-93.PubMedGoogle Scholar
  211. 211.
    Harbarth S, Burke JP, Lloyd JF, et al. Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis 2002;35:e120-e127.PubMedGoogle Scholar
  212. 212.
    Chen CY, Kumar RN, Feng YH, et al. Treatment outcomes in patients receiving conventional amphotericin B therapy: a prospective multicentre study in Taiwan. J Antimicrob Chemother 2006;57:1181-8.PubMedGoogle Scholar
  213. 213.
    Ullmann AJ, Sanz MA, Tramarin A, et al. Prospective study of amphotericin B formulations in immunocompromised patients in 4 European countries. Clin Infect Dis 2006;43:e29-e38.PubMedGoogle Scholar
  214. 214.
    Cagnoni PJ, Walsh TJ, Prendergast MM, et al. Pharmacoeconomic analysis of liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. J Clin Oncol 2000;18:2476-83.PubMedGoogle Scholar
  215. 215.
    Harbarth S, Burke JP, Lloyd JF, et al. Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis 2002;35:e120-e127.PubMedGoogle Scholar
  216. 216.
    Berdichevski RH, Luis LB, Crestana L, Manfro RC. Amphotericin B-related nephrotoxicity in low-risk patients. Braz J Infect Dis 2006;10:94-9.PubMedGoogle Scholar
  217. 217.
    Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 2002;347:2020-9.PubMedGoogle Scholar
  218. 218.
    Walsh TJ, Teppler H, Donowitz GR, et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 2004;351:1391-402.PubMedGoogle Scholar
  219. 219.
    Enoch DA, Ludlam HA, Brown NM. Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 2006;55:809-18.PubMedGoogle Scholar
  220. 220.
    Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002;347:408-15.PubMedGoogle Scholar
  221. 221.
    Gerkens JF, Bhagwandeen SB, Dosen PJ, Smith AJ. The effect of salt intake on cyclosporine-induced impairment of renal function in rats. Transplantation 1984;38:412-7.PubMedGoogle Scholar
  222. 222.
    Smith SR, Galloway MJ, Reilly JT, Davies JM. Amiloride prevents amphotericin B related hypokalaemia in neutropenic patients. J Clin Pathol 1988;41:494-7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nathalie K. Zgheib
    • 1
    • 2
  • Blair Capitano
    • 1
  • Robert A. Branch
    • 1
    • 3
  1. 1.University of PittsburghPittsburghUSA
  2. 2.Pharmacology and TherapeuticsAmerican University of BeirutLebanon
  3. 3.Center for Clinical PharmacologyThermo Fisher Scientific Building, Suite 450PittsburghUSA

Personalised recommendations