Skip to main content

Aminoglycosides and vancomycin

  • Chapter
Clinical Nephrotoxins

Since the discovery of streptomycin in 1944, aminoglycosides have endured as indispensable agents in the antimicrobial armamentarium. This is despite their well described potential for serious nephrotoxicity and otoxicity and the emergence of other classes of antibiotics with similar antibacterial spectrums. The major aminoglycoside antibiotics in clinical use worldwide include gentamicin, tobramycin, amikacin, netilmicin, neomycin, isepamicin and arbekacin. These agents remain in clinical use against gram negative infections largely because of their dependable efficacy. Several attributes render these antibiotics particularly effective. First, aminoglycosides exhibit a concentration-dependent bactericidal activity [1, 2]. Unlike the β-lactams, the bactericidal activity of aminoglycosides depends more on their concentration rather than the duration of antimicrobial exposure. Further, the bactericidal efficacy increases with increasing aminoglycoside concentration. Aminoglycosides also exhibit a post-antibiotic effect meaning they continue to kill bacteria even after the aminoglycoside concentration has fallen below the bacterial minimum inhibitory concentration. Another useful attribute of aminoglycosides is their synergism with antibiotics that inhibit bacterial cell wall biosynthesis, such as β-lactams and vancomycin. Finally, aminoglycosides have relatively predictable pharmacokinetic characteristics that allow them to be dosed to minimize their inherent toxicities. However, despite this predictable pharmacokinetic profile, aminoglycosides always retain their potential for serious toxicity. Moreover, aminoglycoside toxicity can occur despite the maintenance of serum levels in the therapeutic range. The purpose of this section is to describe the nephrotoxicity associated with the clinical use of aminoglycoside antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vackulenko SB, Moashery S, Versatility of aminoglycosides and prospects for their future, Clinical Microbiology Reviews, 2003; 16(3): 430-50.

    Google Scholar 

  2. Chambers HF, Chapter 45 Aminoglycosides In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11 edition, editors Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A, 2006, McGraw-Hill New York.

    Google Scholar 

  3. Nicolau DP, Freeman CD, Belliveau PP, Experience with once-daily aminoglycoside program administered to 2184 adult patients, Antimicrob Agents Chemother, 1995; 39(3): 650-55.

    PubMed  CAS  Google Scholar 

  4. Smith CR, Moore RD, Lietman PS, Studies of risk factors for aminoglycoside nephrotoxicity, Am J Kidney Dis, 1986; 8(5): 308-13.

    PubMed  CAS  Google Scholar 

  5. Schentag JJ, Cerra FB, Plaut ME, Clinical and pharmacokinetic characteristics of aminoglycoside nephrotoxicity in 201 critically ill patients, Antimicrob Agents Chemother, 1982; 21(5): 721-26.

    PubMed  CAS  Google Scholar 

  6. Beauchamp D, Labrecque G, Aminoglycoside nephrotoxicity: do time and frequency of administration matter?, Current opinion in critical care, 2001; 7: 401-08.

    PubMed  CAS  Google Scholar 

  7. English WP, Williams MD, Should aminoglycoside antibiotics be abandoned?, Am J Surg, 2000; 180:512-16.

    PubMed  CAS  Google Scholar 

  8. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT, Hospital-acquired renal insufficiency: a prospective study, Am J Med, 1983; 74: 243-48.

    PubMed  CAS  Google Scholar 

  9. Koo J, Tight R, Rajkumar V, Hawa Z, Comparison of once-daily versus pharmacokinetic dosing of aminoglycosides in elderly patients, Am J Med, 1996; 101: 177-83.

    PubMed  CAS  Google Scholar 

  10. Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL, Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity, Antimicrob Agents Chemother, 1999; 43(7): 1549-55.

    PubMed  CAS  Google Scholar 

  11. Smith CR, Lipsky JJ, Laskin OL, Hellmann DB, Mellits ED, Longstreth J, Lietman PS, Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin, New Engl J Med, 1980; 302 (20): 1106-1109.

    PubMed  CAS  Google Scholar 

  12. Munckhof WJ, Grayson ML, Turnidge JD, A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses, J Antimicrob Chemother, 1996; 37: 645-63.

    PubMed  CAS  Google Scholar 

  13. Hatala R, Dinh T, Cook DJ, Once-daily aminoglycoside dosing in immunocompetent adults, Ann Int Med, 1996; 124(8): 717-25.

    PubMed  CAS  Google Scholar 

  14. Ferriols-Lisart R, Alos-Alminana M, Effectiveness and safety of once-daily aminoglycosides: a meta-analysis, Am J Health Syst Pharm, 1996; 53(10): 1141-50.

    PubMed  CAS  Google Scholar 

  15. Barza M, Ioannidis JP, Capelleri JC, Lau J, Single or multiple daily doses of aminoglycosides: a meta-analysis, BMJ, 1996; 312(7027): 338-44.

    PubMed  CAS  Google Scholar 

  16. Prins JM, Buller HR, Once versus daily gentamicin in patients with serious infections, Lancet, 1993; 341: 335-39.

    PubMed  CAS  Google Scholar 

  17. Smith CR, Baughma KL, Edwards CQ, Rogers JF, Lietman PS, Controlled comparison of amikacin and gentamicin, New Engl J Med, 1977; 296 (7): 349-53.

    PubMed  CAS  Google Scholar 

  18. Klkeinknecht D, Landais P, Goldbarb B, Pathophysiology and clinical aspects of drug-induced tubular necrosis in man, ContrNephrol, 1987; 55: 145-58.

    Google Scholar 

  19. Lane AZ, Wright GE, Blair DC, Ototoxicity and nephrotoxicity of amikacin, Am J Med, 1977; 62: 911-18.

    PubMed  CAS  Google Scholar 

  20. Bertino JS, Booker LA, Franck PA, Jenkins PL, Franck KR, Nafziger AN, Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring, J Inf Dis, 1993; 167:173-79.

    Google Scholar 

  21. Raveh D, Kopyt M, Hite Y, Rudensky B, Sonnenblick M, Yinnon AM, Risk factors for nephrotoxicity in elderly patients receiving once-daily aminoglycoside, Q J Med, 2002; 95: 291-97.

    CAS  Google Scholar 

  22. Galloe AM, Graudal N, Christensen HR, Kampmann JP, Aminoglycosides: single or multiple daily dosing, Eur J Pharmacol, 1995; 48: 39-43.

    CAS  Google Scholar 

  23. Paterson DL, Robson JM, Wagener MM, Risk factors for toxicity in elderly patients given aminoglycosides once daily, J Gen Intern Med, 1998; 13: 735-39.

    PubMed  CAS  Google Scholar 

  24. Baciewicz AM, Sokos DR, Cowan RI, Aminoglycoside-associated nephrotoxicity in the elderly, Ann Pharmacother, 2003; 37: 182-6.

    PubMed  CAS  Google Scholar 

  25. Bailey TC, Little JR, Littenberg B, Reichhley RM, Dunagan WC, A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides, Clin Infect Dis, 1997; 24: 786-95.

    PubMed  CAS  Google Scholar 

  26. Lerner AM, Reyes MP, Cone LA, Blair DC, Jansen W, Wright GE, Lorber RR, Randomised, controlled trial of the comparative efficacy, auditory toxicity and nephrotoxicity of tobramycin and netilmicin, Lancet, 1983; 1123-25.

    Google Scholar 

  27. Hitt CM, Klepser ME, Nightingale CH, Quintiliani R, Nicolau DP, Pharmacoeconomic impact of once-daily aminoglycoside admin-istration, Pharmacotherapy, 1997; 17(4): 810-14.

    PubMed  CAS  Google Scholar 

  28. Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS, Risk factors for nephrotoxicity in patients treated with aminoglycosides, Ann Int Med, 1984; 100: 352-57.

    PubMed  CAS  Google Scholar 

  29. Sawyers CL, Moore RD, Lerner SA, Smith CR, A model for predicting nephrotoxicity in patients treated with aminoglycosides, J Infect Dis, 1986; 153(6): 1062-68.

    PubMed  CAS  Google Scholar 

  30. Humes, HD, Aminoglycoside nephrotoxicity, Kidney Int; 1988; 33: 900-11.

    PubMed  CAS  Google Scholar 

  31. Burton ME, Shaw LM, Schentag JJ, Evans WE, Applied pharmacokinetics and pharmacodynamics: principles of therapeutic drug monitoring, 4th ed, 2006, Lippincott Williams and Wilkins, Baltimore, MD, Philadelphia PA.

    Google Scholar 

  32. Ali BH, Gentamicin nephrotoxicity in humans and animals: some recent research, Gen Pharmac, 1995; 26(7): 1477-87.

    CAS  Google Scholar 

  33. Shargel L, Multi-compartment models, In: Applied biopharmaceutics and pharmacokinetics, Shargel L, Wu Pong S, Yu A, editors, McGraw-Hill, New York, 2005.

    Google Scholar 

  34. McNamara DR, Nafziger AN, Menhinick AM, Bertino JS, A dose-ranging study of gentamicin pharmacokinetics: implications for extended interval aminoglycoside therapy, J Clin Pharm, 2001; 41: 374-77.

    CAS  Google Scholar 

  35. Triggs E, Charles B, Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly, Clin Pharmacokinet, 1999; 37(4): 331-41.

    PubMed  CAS  Google Scholar 

  36. Laurent G, Kishore B, Tulkens PM, Aminoglycoside-induced renal phospholipidosis and nephrotoxicity, Biochem Pharm, 1990; 40(11): 2383-92.

    PubMed  CAS  Google Scholar 

  37. Fabre J, Rudhardt M, Blanchard P, Regamey C, Persistence of sisomicin and gentamicin in renal cortex and medulla compared with other organs and serum of rats, Kidney Int, 1976; 10: 444-49.

    PubMed  CAS  Google Scholar 

  38. Giuliano RA, Paulus GJ, Verpooten GA, Pattyn VM, Pollet DE, Nouwen EJ, Laurent G, Carlier MB, Maldague P, Tulkens PM, De Broe ME, Recovery of cortical phospholipidosis and necrosis after acute gentamicin loading in rat, Kidney Int, 1984; 26: 838-47.

    PubMed  CAS  Google Scholar 

  39. Giuliano RA, Verpooten GA, Verbist L, Wedeen RP, DeBroe ME, In vivo Uptake kinetics of aminoglycosides in the kidney cortex of rats, J Pharmacol Exp Ther, 1985; 236 (2): 470-75.

    Google Scholar 

  40. Vandewalle A, Farman N, Morin JP, Fillastre JP, Hatt PY, Bonvalet JP, Gastineau M, Wanstok F, Gentamicin incorporation along the nephron: autoradiographic study on isolated tubules, Kidney Int, 1981; 19: 529-39.

    PubMed  CAS  Google Scholar 

  41. Wedeen RP, Batuman V, Cheeks C, Marquet E, Sobel H, Transport of gentamicin in rat proximal tubule, 1983, Lab Invest, 1983; 48(2): 212-23.

    PubMed  CAS  Google Scholar 

  42. Mingeot-Leclercq MP, Tulkens PM, Aminoglycosides: nephrotoxicity, Antimicrob Agents Chemotherap, 1999; 43(5): 1003-1012.

    CAS  Google Scholar 

  43. Nagai J, Takano M, Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity, Drug Metab Pharmacokinet, 2004; 19(3): 159-70.

    PubMed  CAS  Google Scholar 

  44. Silverblatt FJ, Kuehn C, Autoradiography of gentamicin uptake by the rat proximal tubule cell, Kidney Int, 1979; 15: 335-45.

    PubMed  CAS  Google Scholar 

  45. Molitoris, BA, Meyer C, Dahl R, Geerdes A, Mechanism of ischemia-enhanced aminoglycoside binding and uptake by proximal cells, Am J Physiol, 1993; F907-916.

    Google Scholar 

  46. Spiegel DM, Shanley PF, Molitoris BA, Mild ischemia predisposes the S3 segment to gentamicin toxicity, Kidney Ing, 1990, 38: 459-64.

    CAS  Google Scholar 

  47. Sastrasinh M, Knauss TC, Weinberg JM, Humes HD, Identification of the aminoglycoside binding site in rat renal brush border membranes, J Pharmacol Ext Ther, 1982; 22(2): 350-58.

    Google Scholar 

  48. Moestrup SK, Cui S, Vorum H, Bregengard C, Bjorn SE, Norris K, Gliemann J, Christensen EI, Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs, J Clin Invest, 1995; 96: 1404-13.

    PubMed  CAS  Google Scholar 

  49. Hammond TG, Majewski RR, Kaysen JH, Goda FO, Navar GL, Pontillon F, Verroust PJ, Gentamicin inhibits rat renal cortical homo-typic endosomal fusion: role of megalin, Am J Physiol, 1997; 272 (41): F117-23.

    PubMed  CAS  Google Scholar 

  50. Christensen EI, Birn H, Megalin and cubilin: multifunctional endocytic receptors, Nature Reviews: Molecular Biology, 2002; 3: 258-68.

    Google Scholar 

  51. Williams PD, Bennett DB, Gleason CR, Hottendorf GH, Correlation between renal membrane binding and nephrotoxicity, Anti-microb Agents Chemotherap, 1987; 31(4): 570-74.

    CAS  Google Scholar 

  52. Christensen EI, Birn H, Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule, Am J Physiol, 2001; 280: F562-73.

    CAS  Google Scholar 

  53. Christensen EI, Willnow TE, Essential role of megalin in renal proximal tubule for vitamin homeostasis, J Am Soc Nephrol, 1999; 10: 2224-36.

    PubMed  CAS  Google Scholar 

  54. Kerjaschki D, Fahquhar MG, The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border, Proc Nat Acad Sci, USA, 1982; 79: 5557-61.

    CAS  Google Scholar 

  55. Lundgren S, Carling T, Hjalm G, Juhlin C, Rastad J, Pihlgren U, Rask L, Akerstrom G, Hellman P, Tissue distribution of human gp330/megalin, a putative calcium-sensing protein, J Histochem Cytochem, 1997; 45(3): 383-92.

    PubMed  CAS  Google Scholar 

  56. Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, Willnow TE, Megalin deficiency offers protection from renal aminoglyside accumulation, J Biol Chem, 2002; 277 (1): 618-22.

    PubMed  CAS  Google Scholar 

  57. Cui S, Verroust PJ, Moestrup SK, Christensen EI, Megalin/gp330 mediates uptake of albumin in the renal proximal tubule, Am J Physiol, 1996; 271: F900-907.

    PubMed  CAS  Google Scholar 

  58. Nagai J, Tanaka H, Nakanishi N, Murakami T, Takano M, Role of megalin in renal handling of aminoglycosides, Am J Physiol, 2001; 281: F337-44.

    CAS  Google Scholar 

  59. Christensen EI, Birn H, Verroust P, Moestrup SK, Membrane receptors for endocytosis in the renal proximal tubule, Int Rev Cytol, 1998, 237-84.

    Google Scholar 

  60. Willnow TE, Receptor-associated protein (RAP): a specialized chaperone for endocytic receptors, Biol Chem, 1998; 379: 1025-31.

    PubMed  CAS  Google Scholar 

  61. Birn H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI, Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules, J Am Soc Nephrol, 2000; 11: 191-202.

    PubMed  CAS  Google Scholar 

  62. Zhai, XY, Nielsen R, Birn H, Drumm K, MildenbergerS, Freudinger R, Moestrup SK, Verrouost PJ, Christensen EI, Gekle M, Cubilin and megalin-mediated uptake of albumin in cultures proximal tubule cells of opossum kidney, 2000, 58: 1523-33.

    CAS  Google Scholar 

  63. Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI, Cubilin is an albumin binding protein important for renal tubular albumin reabsorption, J Clin Invest, 2000; 105: 1353-61.

    PubMed  CAS  Google Scholar 

  64. Koryraki R, Cubilin, a multifunctional epithelial receptor: an overview, J Mol Med, 2001; 79: 161-67.

    Google Scholar 

  65. Verroust PJ, Birn H, Nielsen R, Kozyraki R, Christensen EI, The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology, Kidney Int, 2002; 62: 745-56.

    PubMed  CAS  Google Scholar 

  66. Bennett WM, Mechanisms of aminoglycoside nephrotoxicity, Clin Exp Pharm Physiol, 1989; 16: 1-6.

    CAS  Google Scholar 

  67. Olbricht CJ, Fink M, Gutjahr E, Alterations in lysosomal enzymes of the proximal tubule in gentamicin nephrotoxicity, Kidney Int, 1991; 39: 639-46.

    PubMed  CAS  Google Scholar 

  68. Ford, DM, Dahl RH, Lamp CA, Molitoris BA, Apically and basolaterally internalized aminoglycosides colocalize in LLC-PK1 lyso-somes and alter cell function, Am J Physiol, 1994; 266: C52-57.

    PubMed  CAS  Google Scholar 

  69. Servais H, Van Der Smissen P, Thirion G, Van Der Essen, G, Van Bambeke F, Tulkens PM, Mingeot-Leclercq M, Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria, Toxicol Appl Pharmacol, 2005; 206: 321-33.

    PubMed  CAS  Google Scholar 

  70. Sandoval R, Leiser J, Molitoris BA, Aminoglycoside antibiotics traffic to the Golgi complex in LLC-PK1 cells, J Am Soc Nephrol, 1998; 9: 167-74.

    PubMed  CAS  Google Scholar 

  71. Tulkens P, Trouet A, The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibrob-lasts, Biochem Pharm, 1977; 27: 415-24.

    Google Scholar 

  72. Takano M, Ohishi Y, Okuda M, Yasuhar M, Hori R, Transport of gentamicin and fluid-phase endocytosis markers in the LLC-PK1 kidney epithelial cell line, J Pharmacol Exp Therap, 1993, 268(2): 669-74.

    Google Scholar 

  73. Hori R, Okuda M, Ohisi Y, Masato Y, Takano M, Surface binding and intracellular uptake of gentamicin in the cultured kidney epithelial cell line (LLC-PK1), J Pharmacol Exp Therap, 1992, 261(3): 1200-05.

    CAS  Google Scholar 

  74. Sundin DP, Sandoval R, Molitoris BA, Gentamicin inhibits renal protein and phospholipid metabolism in rats: implications involv-ing intracellular trafficking, J Am Soc Nephrol, 2001, 12: 114-23.

    PubMed  CAS  Google Scholar 

  75. Sandoval R, Dunn KW, Molitoris BA, Gentamicin traffics rapidly and directly to the Golgi complex in LLC-PK1 cells, Am J Physiol, 2000, 279: F884-890.

    CAS  Google Scholar 

  76. Sandvig K, Ryd M, Garred O, Schwea E, Holm PK, van Deurs B, Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP, J Cell Biol, 1994, 126: 53-64.

    PubMed  CAS  Google Scholar 

  77. Lord JM, Roberts LM, Toxin entry: retrograde transport through the secretory pathway, J Cell Biol, 1998, 140: 733-36.

    PubMed  CAS  Google Scholar 

  78. Sandoval RM, Molitoris BA, Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum, Am J Physiol, 2004, 286: F617-24.

    CAS  Google Scholar 

  79. Sandoval RM, Bacallao RL, Dunn KW, Leiser JD, Molitoris BA, Nucleotide depletion increases trafficking of gentamicin to the Golgi complex in LLC-PK1 cells, Am J Physiol, 2002, 283: F1422-29.

    CAS  Google Scholar 

  80. Sandvig K, Garred O, van Helvoort A, van Meer G, Van Deurs B, Importance of glycolipid synthesis for butyric acid-induced sensitization to Shiga toxin and intracellular sorting of toxin in A431 cells, Mol Biol Cell, 1996; 7: 1391-1404.

    PubMed  CAS  Google Scholar 

  81. Bennett WM, Mela-Riker LM, Houghton DC, Gilbert DN, Buss WC, Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity, Am J Physiol, 1988; 24: F265-69.

    Google Scholar 

  82. Zager RA, Gentamicin nephrotoxicity in the setting of acute renal hypoperfusion, Am J Physiol, 1988; 23: F574-81.

    Google Scholar 

  83. Houghton DC, Hartnett M, Campbell-Boswell M, Porter G, Bennett W, A light and electron microscopic analysis of gentamicin nephrotoxicity in rats, Am J Pathol, 1976, 82: 589-612.

    PubMed  CAS  Google Scholar 

  84. Humes HD, Weinberg JM, Knauss TC, Clinical and pathophysiologic aspects of aminoglycoside nephrotoxicity, Am J Kidney Dis, 1982; 2(1): 4-29.

    Google Scholar 

  85. Kosek JC, Mazze RI, Cousins MJ, Nephrotoxicity of gentamicin, Lab Invest, 1974, 30(1): 48-57.

    PubMed  CAS  Google Scholar 

  86. El-Mouedden M, Laurent G, Mingeot-Leclercq MP, Taper HS, Cumps J, Tulkens PM, Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides, Antimicrob Agents Chemotherap, 2000, 44(3): 665-75.

    CAS  Google Scholar 

  87. El-Mouedden M, Laurent G, Mingeot-Leclercq MP, Tulkens PM, Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts, Toxicol Sci, 2000, 56:229-39.

    PubMed  CAS  Google Scholar 

  88. Servais H, Jossin Y, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP, Gentamicin causes apoptosis at low concentrations in renal LLC-PK1 cells subjected to electroporation, Antimicrob Agents Chemotherap, 2006, 50(4): 1213-21.

    CAS  Google Scholar 

  89. Laurent G, Kishore BK, Tulkens PM, Aminoglycoside-induced renal phospholipidosis and nephrotoxicity, Biochem Pharmacol, 1990, 40(11): 2383-92.

    PubMed  CAS  Google Scholar 

  90. Miyazaki T, Sagawa R, Honma T, Noguchi S, Harada T, Komatsuda A, Ohtani H, Wakui H, Sawada K, Otaka M, Watanabe S, Jikei M, Ogawa N, Hamada F, Itoh H, 73-kDa molecular chaperone HSP73 is a direct target of antibiotic gentamicin, J Biol Chem, 2004; 279(17): 17295-17300.

    PubMed  CAS  Google Scholar 

  91. Martinez-Salgado C, Eleno N, Morales AI, Perez-Barriocanal F, Arevalo M, Lopez-Novoa JM, Gentamicin treatment induces simul-taneous mesangial proliferation and apoptosis in rats, Kidney Int, 2004, 65: 2161-71.

    PubMed  CAS  Google Scholar 

  92. Laurent G, Carlier MB, Rollman B, Van Hoof F, Tulkens P, Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin, Biochem Pharmac, 1982, 31(23): 3861-70.

    CAS  Google Scholar 

  93. Giurgea-Marin L, Toubeau G, Laurent G, Heuson-Stiennon JA, Tulkens PM, Impairment of lysosome-pinocytotic vesicle fusion in rat kidney proximal tubules after treatment with gentamicin at low doses, Toxicol Appl Pharmacol, 1986, 86: 271-85.

    Google Scholar 

  94. Hostetler KY, Hall LB, Inhibition of kidney lysosomal phospholipases A and C by aminoglycoside antibiotics: possible mechanism of aminoglycoside toxicity, Proc Nat Acad Sci, 1982, 79: 1663-67.

    PubMed  CAS  Google Scholar 

  95. Appel GB, Aminoglycoside nephrotoxicity, Am J Med, 1990, 88:16S-20S.

    PubMed  CAS  Google Scholar 

  96. Schwertz DW, Kreisberg JI, Venkatachalam, Effects of aminoglycosides on proximal tubule brush border membrane phosphati-dylinositol-specific phospholipase C, J Pharmac and Exp Therap, 1984, 231(1): 48-55.

    CAS  Google Scholar 

  97. Sundin DP, Meyer C, Dahl R, Geerdes A, Sandoval R, Molitoris BA, Cellular mechanism of aminoglycoside tolerance in long-term gentamicin treatment, Am J Physiol, 1997, 272: C1309-18.

    PubMed  CAS  Google Scholar 

  98. Schwertz DW, Kreisberg JI, Venkatachalam, Gentamicin-induced alterations in pig kidney epithelial (LLC-PK1) cells in culture, 1985, 236(1): 254-62.

    Google Scholar 

  99. Simmons CF, Bogusky RT, Humes HD, Inhibitory effects of gentamicin on renal mitochondrial oxidative phosphorylation, J Pharmac Ext Therap, 1980, 214(3): 709-15.

    CAS  Google Scholar 

  100. Weinberg, JM, Harding PG, Humes HD, Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria: effects on mitochondrial monovalent cation transport, Arch Biochem Biophys, 1980, 205(1): 232-39.

    PubMed  CAS  Google Scholar 

  101. Weinberg, JM, Humes HD, Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria: effects on mitochon-drial respiration, Arch Biochem Biophys, 1980, 205(1): 222-31.

    PubMed  CAS  Google Scholar 

  102. Mather M, Rottenberg H, Polycations induce the release of soluble intermembrane mitochondrial proteins, Biochim Biophys Acta, 2001, 1503: 357-68.

    PubMed  CAS  Google Scholar 

  103. Walker PD, Shav SV, Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats, J Clin Invest, 1988, 81: 334-41.

    PubMed  CAS  Google Scholar 

  104. Ueda N, Guidet B, Shah SV, Gentamicin-induced mobilization of iron from renal cortical mitochondria, Am J Physiol, 1993, 34: F435-39.

    Google Scholar 

  105. Kaloyanides GJ, Aminoglycoside-induced functional and biochemical defects in the renal cortex, Toxicol Sci, 1984, 4(6): 930-43.

    CAS  Google Scholar 

  106. Weisblum B, Davies J, Antibiotic inhibitors of the bacterial ribosome, Bacteriol Rev, 1968, 32(4): 493-528.

    PubMed  CAS  Google Scholar 

  107. Davies, J, Gorini L, Davis BD, Misreading of RNA codewords induced by aminoglycoside antibiotics, Mol Pharmacol, 1965, 1: 93-106.

    PubMed  CAS  Google Scholar 

  108. Tai PC, Davis BD, Triphasic concentration effects of gentamicin activity on misreading in protein synthesis, Biochem, 1979, 18(1): 193-98.

    CAS  Google Scholar 

  109. Clark JM, Chang AY, Inhibitors of the transfer of amino acids from aminoacyl soluble ribonucleic acid to proteins, J Biol Chem, 1965, 240(12): 4734-39.

    PubMed  CAS  Google Scholar 

  110. Kuhberger R, Piepersberg W, Petzet A, Buckel P, Bock A, Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli: effects on fidelity of protein synthesis, Biochem, 1979, 18(1): 187-92.

    CAS  Google Scholar 

  111. Wilhelm JM, Jessop JJ, Pettitt SE, Aminoglycoside antibiotics and eukaryotic protein synthesis: stimulation of errors in the translation of natural messengers in extracts of cultured human cells, Biochem, 1978, 17(7): 1149-53.

    CAS  Google Scholar 

  112. Moskowitz M, Kelker N, Sensitivity of cultured mammalian cells to streptomycin and dihydrostreptomycin, Science, 1963, 141: 647-48.

    PubMed  CAS  Google Scholar 

  113. Charlwood J, Skehel JM, King N, Camilleri P, Lord P, Bugelski P, Atif U, Proteomic analysis of rat kidney cortex following treatment with gentamicin, J Proteom Res, 2002, 1(1): 73-82.

    CAS  Google Scholar 

  114. Moriyama T, Nakahama H, Fukuhara Y, Horio M, Yanase M, Orita Y, Kamada T, Kanashiro M, Miyake Y, Decrease in the fluidity of brush border membrane vesicles induced by gentamicin, Biochem Pharmac, 1989, 38(7): 1169-74.

    CAS  Google Scholar 

  115. Inui K, Saito H, Iwata T, Hori R, Aminoglycoside-induced alterations in apical membranes of kidney epithelial cell line (LLC-PK1), Am J Physio, 254: C251-57.

    Google Scholar 

  116. Whipple JK, Ausman RK, Franson T, Quebbeman EJ, Effect of individualized pharmacokinetic dosing on patient outcome, Crit Care Med, 1991, 19(12): 1480-85.

    PubMed  CAS  Google Scholar 

  117. Bartal C, Danon A, Schlaffer F, Reisenberg K, Alkan M, Smoliakov R, Sidi A, Almog Y, Pharmacokinetic dosing of aminoglycosides: a controlled trial, Am J Med, 2003, 114: 194-98.

    PubMed  CAS  Google Scholar 

  118. Destache CJ, Meyer SK, Bittner MJ, Hermann KG, Impact of clinical pharmacokinetic service on patients treated with aminogly-cosides: a cost-benefit analysis, Ther Drug Mon, 12: 419-26.

    Google Scholar 

  119. Burton ME, Ash CL, Hill DP, Handy R, Shepherd MD, Vasko MR, A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration, Clin Pharmacol Ther, 49: 685-94.

    Google Scholar 

  120. Kemme DJ, Daniel CI, Aminoglycoside dosing: a randomized prospective study, South Med J, 1993, 86(1): 46-51.

    PubMed  CAS  Google Scholar 

  121. Leehey DJ, Braun MI, Tholl DA, Chung LS, Gross CA, Roback JA, Lentino JR, Can pharmacokinetic dosing decrease nephrotoxicity associated with aminoglycoside therapy?, 1993, J Am Soc Nephrol, 1993, 4: 81-90.

    PubMed  CAS  Google Scholar 

  122. Dillon KR, Dougherty SH, Casner P, Polly S, Individualized pharmacokinetic versus standard dosing of amikacin: a comparison of therapeutic outcomes, J Amtimicrob Chemo, 1989, 24: 581-89.

    CAS  Google Scholar 

  123. McCormack JP, Jewesson PJ, A critical reevaluation of the “therapeutic range” of aminoglycosides, Clin Infect Dis, 1992, 14: 320-39.

    PubMed  CAS  Google Scholar 

  124. McCormack JP, An emotional-based medicine approach to monitoring once-daily aminoglycosides, Pharmacother, 2000, 20(12): 1524-27.

    CAS  Google Scholar 

  125. Ali BH, Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research, Food Chem Toxicol, 2003, 41: 1447-52.

    PubMed  CAS  Google Scholar 

  126. Beauchamp D, Laurent G, Maldague P, Abid S, Kishore BK, Tulkens PM, Protection against gentamicin-induced early renal alterations (phospholipidosis and increased DNA synthesis by coadministration of poly-L-aspartic acid, J Pharmacol Exp Therap, 1990, 255(2): 858-66.

    CAS  Google Scholar 

  127. Kishore BK, Lambricht P, Laurent G, Maldague P, Wagner R, Tulkens PM, Mechanism of protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis. II. Comparative in-vitro and in-vivo studies with poly-L-aspartic, poly-L-glutamic and poly-D-glutamic acids, J Pharmacol Exp Therap, 1990, 255(2): 875-85.

    CAS  Google Scholar 

  128. Ramsammy LS, Josepovitz C, Lane BP, Kaloyanides, Polyaspartic acid protects against gentamicin nephrotoxicity in the rat, J Pharmacol Exp Therap, 1989, 250(1): 149-53.

    CAS  Google Scholar 

  129. Williams PD, Hottendorf GH, Bennett DB, Inhibition of renal membrane binding and nephrotoxicity of aminoglycosides, J Phar-macol Exp Therap, 1986, 237(3): 919-25.

    CAS  Google Scholar 

  130. Kishore BK, Ibrahim S, Lambricht P, Laurent G, Maldague P, Tulkens PM, Comparative assessment of poly-L-aspartic and poly-L-glutamic acids as protectants against gentamicin-induced renal lysosomal phospholipidosis, phospholipiduria and cell proliferation in rats, J Pharmacol Exp Therap, 1992, 262(1): 424-32.

    CAS  Google Scholar 

  131. Josepovitz C, Pastorzia-Munoz E, Timmerman D, Scott M, Feldman S, Kaloyanides GJ, Inhibition of gentamicin uptake in rat renal cortex in vivo by aminoglycosides and organic polycations, J Pharmacol Exp Therap, 1982, 223(2): 314-21.

    CAS  Google Scholar 

  132. Gilbert DN, Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Finkbeiner HC, Lindsley J, Bennett WM, Polyaspartic acid prevents experimental aminoglycoside nephrotoxicity, J Infect Dis, 1989, 159(5): 945-53.

    PubMed  CAS  Google Scholar 

  133. Swan SK, Gilbert DN, Kohlhepp SJ, Leggett JE, Kohnen PW, Bennett WM, Duration of the protective effect of polyaspartic acid on experimental gentamicin nephrotoxicity, Antimicrob Agents Chemother, 1992, 36(11): 2556-58.

    PubMed  CAS  Google Scholar 

  134. Kishore BK, Kallay Z, Lambricht P, Laurent G, Tulkens PM, Mechanism of protection afforded by polyaspartic acid against gen-tamicin-induced phospholipidosis I. polyaspartic acid binds gentamicin and displaces it from negatively charged phospholipid layers in vitro, J Pharmacol Exp Therap, 1990, 255(2): 867-74.

    CAS  Google Scholar 

  135. Mingeot-Leclercq, MP, Glupczynski Y, Tulkens PM, Aminoglycosides: activity and resistance, Antimicrob Agents Chemother, 1999, 43(4): 727-37.

    PubMed  CAS  Google Scholar 

  136. Ali BH, Bashir AK, Effect of superoxide dismutase treatment on gentamicin nephrotoxicity in rats, Gen Pharmac, 1996, 27(2): 349-53.

    CAS  Google Scholar 

  137. Ali BH, Mousa HM, Effect of dimethyl sulfoxide on gentamicin-induced nephrotoxicity in rats, Hum Exp Toxicol, 2001, 20: 199-203.

    PubMed  CAS  Google Scholar 

  138. Sandya P, Mohandass S, Varalakshmi P, Role of DL a-lipoic acid in gentamicin induced nephrotoxicity, Mol Cell Biochem, 2005, 145(1): 11-17.

    Google Scholar 

  139. Mazzon E, Britti D, De Sarro A, Caputi AP, Cuzzocrea S, Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats, Eur J Pharmacol, 2001, 424: 75-83.

    PubMed  CAS  Google Scholar 

  140. Reiter RJ, Tan D, Sainz RM, Mayo JC, Lopez-Burillo S, Melatonin: reducing the toxicity and increasing the efficacy of drugs, J Pharm Pharmacol, 2002, 54: 1299-1321.

    PubMed  CAS  Google Scholar 

  141. Ozbek E, Turkoz Y, Sahna E, Ozugurlu F, Mizrak B, Ozbek M, Melatonin administration prevents the nephrotoxicity induced by gentamicin, BJU Int, 2000, 85: 742-46.

    PubMed  CAS  Google Scholar 

  142. Kumar KV, Shifow AA, Naidu MR, Ratnaker KS, Carvedilol: a betablocker with antioxidant property protects against gentamicin-induced nephrotoxicity in rats, Life Sci, 2000, 26: 2603-11.

    Google Scholar 

  143. Kumar KV, Naidu MR, Shifow AA, Ratnakar KS, Probucol protects against gentamicin-induced nephrotoxicity in rats, Ind J Phar-macol, 2000, 32: 108-13.

    CAS  Google Scholar 

  144. Ben-Ismail TH, Ali BH, Bashir AA, Influence of iron, deferoxamine and ascorbic acid on gentamicin-induced nephrotoxicity in rats, Gen Pharmacol, 1994, 25(6): 1259-52.

    Google Scholar 

  145. Bennett WM, Elliott WC, Houghton DC, Gilbert DN, DeFehr J, McCarron DA, Reduction of experimental gentamicin nephrotoxicity in rats by dietary calcium loading, Antimicrob Agents Chemotherap, 1982, 22(3): 508-12.

    CAS  Google Scholar 

  146. Quarum ML, Houghton DC, Gilbert DN, McCarron DA, Bennett WM, Increasing dietary calcium moderates experimental gentamicin nephrotoxicity, J Lab Clin Med, 1984, 103(1): 104-14.

    PubMed  CAS  Google Scholar 

  147. Humes HD, Sastrasinh M, Weinberg JM, Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity, J Clin Invest, 1982, 73: 134-47.

    Google Scholar 

  148. Kohlhepp SJ, Loveless MO, Kohnen PW, Houghton DC, Bennett WM, Gilbert DN, Nephrotoxicity of the constituents of the gen-tamicin complex, J Infect Dis, 149(4): 605-14.

    Google Scholar 

  149. Sandoval RM, Reilly JP, Running W, Campos SB, Santos JR, Phillips CL, Molitoris BA, A non-nephrotoxic gentamicin congener that retains antimicrobial efficacy, J Am Soc Nephrol, 17: 2697-2705.

    Google Scholar 

  150. Guo X, Nzerue C, How to prevent, recognize and treat drug-induced nephrotoxicity, Clev Clin J Med, 2002, 69(4): 289-312.

    Google Scholar 

  151. Martin JE, Commentary: once-daily aminoglycoside dosing: where are we now?, J Crit Care, 2003, 18(2): 107-13.

    Google Scholar 

  152. Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G, Stegeman CA, Immediate postoperative renal function deteriora-tion in cardiac surgical patients predicts in-hospital mortality and long-term survival, J Am Soc Nephrol, 2005, 16: 195-200.

    PubMed  Google Scholar 

  153. Lassnigg A, Schmidlin D, Mouhieddine M, Bachman LM, Druml W, Bauer P, Hiesmayr M, Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study, J Am Soc Nephrol, 2004, 15: 1597-1605.

    PubMed  CAS  Google Scholar 

  154. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW, Acute kidney injury, mortality, length of stay and costs in hospital-ized patients, J Am Soc Nephrol, 2005, 16: 3365-70.

    PubMed  Google Scholar 

  155. Adams HR, Goodman FR, Weiss GB, Alteration of contractile function and calcium ion movement in vascular smooth muscle by gentamicin and other aminoglycoside antibiotics, Antimicrob Agents Chemotherap, 1974, 5(6): 640-46.

    CAS  Google Scholar 

  156. Cohen LS, Wechsler AS, Mitchell JH, Glick G, Depression of cardiac function by streptomycin and other antimicrobial agents, Am J Cardiol, 1970, 26: 505-11.

    PubMed  CAS  Google Scholar 

  157. Mosenkis A, Kirk D, Berns JS, When chronic kidney disease becomes advanced, Postgrad Med, 2006, 119(1): 83-104.

    PubMed  Google Scholar 

  158. Zager RA, Johnson AC, Lund S, Randolph-Habecker J, Toll-like receptor (TRL4) shedding and depletion: acute proximal tubular cell responses to hypoxic and toxic injury, Am J Physiol, 2007, 292: F304-312.

    CAS  Google Scholar 

  159. Hopkins P, Cohen J, Toll-like receptors: the key to the stable door?, Crit Care, 2002, 6: 99-101.

    PubMed  Google Scholar 

  160. Zager RA, Subclinical gentamicin nephrotoxicity: a potential risk factor for exaggerated endotoxin-driven TNF-α production, Am J Physiol, 2007, 293: F43-49.

    CAS  Google Scholar 

  161. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B, Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus, Proc Nat Acad Sci USA, 101(10): 3516-21.

    Google Scholar 

  162. Zager RA, Johnson AC, Lund S, Hanson S, Acute renal failure: determinants and characteristics of the injury-induced hyperinflam-matory response, Am J Physiol, 2006, 291: F546-56.

    CAS  Google Scholar 

  163. Zager RA, Johnson AC, Lund S, Endotoxin tolerance: TNF-α hyper-reactivity and tubular cytoresistance in a renal cholesterol loading state, Kidney Int, 2007, 71: 496-503.

    PubMed  CAS  Google Scholar 

  164. Zager RA, Johnson AC, Hanson SY, Lund S, Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-α generation and systemic release, Am J Physiol, 2005, 289: F289-97.

    CAS  Google Scholar 

  165. Anders HJ, Banas B, Schlondorff D, Signaling danger: toll-like receptors and their potential roles in kidney disease, J Am Soc Nephrol, 2004, 15: 854-67.

    PubMed  CAS  Google Scholar 

  166. El-Achkar T, Dagher PC, Renal toll-like receptors: recent advances and implications for disease, Nat Rev Neph, 2(10): 568-81.

    Google Scholar 

  167. El-Achkar T, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC, Sepsis induces changes in the expression and distribution of toll-like receptor 4 in the rat kidney, Am J Physiol, 2005, 290: F1034-43.

    Article  CAS  Google Scholar 

  168. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J, Independent association between acute renal failure and mortalityf ollowing cardiac surgery, Am J Med, 1998, 104(4): 343-48.

    PubMed  CAS  Google Scholar 

  169. Opal SM, Huber CE, Bench-to-bedside review: toll-like receptors and their role in septic shock, Crit Care, 2002, 6: 125-36.

    PubMed  Google Scholar 

  170. Chambers HF, Chapter 46, Protein synthesis inhibitors and miscellaneous antibacterial agents, In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11 edition, editors Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A, 2006, McGraw-Hill New York.

    Google Scholar 

  171. Chambers HF, Chapter 43, Beta-lactam and other cell wall and membrane-active antibiotics, In Basic and clinical pharmacology, 10th edition, editors Katzung B, 2006, McGraw-Hill Medical, New York.

    Google Scholar 

  172. Wilhelm MP, Estes L, Vancomycin, Mayo Clin Proced, 1999, 74: 928-35.

    CAS  Google Scholar 

  173. Elting LS, Rubenstein EB, Kurtin D, Rolston KV, Fangtang J, Martin CG, Raad II, Whimbley EE, Manzullo E, Bodey GP, Mississippi mud in the 1990s, risks and outcomes of vancomycin-associated toxicity in general oncology practice, Cancer, 1998, 83: 2597-607.

    PubMed  CAS  Google Scholar 

  174. Chow AW, Azar RM, Glycopeptides and nephrotoxicity, Inten Care Med, 1994, 20: S23-29.

    Google Scholar 

  175. Vance-Bryan K, Rotschafer JC, Gilliland SS, Rodvold KA, Fitzgerald CM, Guay DR, A comparative assessment of vancomycin-as-sociated nephrotoxicity in the young versus the elderly hospitalized patient, J Antimicrob Chemother, 1994, 33: 811-21.

    PubMed  CAS  Google Scholar 

  176. Downs NJ, Neihart RE, Dolezal JM, Hodges GR, Mild nephrotoxicity associated with vancomycin use, Arch Intern Med, 1989, 149: 1777-81.

    PubMed  CAS  Google Scholar 

  177. Gudmundsson GH, Jensen LJ, Vancomycin and nephrotoxicity, Lancet, 1989, Mar 18: 625.

    Google Scholar 

  178. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH, Nephrotoxicity of vancomycin, alone and with an aminoglycoside, J Anti-microb Chemotherap, 25(4): 679-87.

    Google Scholar 

  179. Cutler NR, Narang PK, Lesko LJ, Ninos M, Power M, Vancomycin disposition: the importance of age, Clin Pharmcol Ther, 1984, 36(6): 803-10.

    CAS  Google Scholar 

  180. Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Gilbert DN, Vancomycin enhancement of experimental nephrotoxicity, Antimicrob Agent Chemother, 1986, 30(1): 20-24.

    CAS  Google Scholar 

  181. Goetz MB, Sayers J, Nephrotoxicity of vancomycin and aminoglycoside therapy separately and in combination, J Antimicrob Chemother, 1993, 32: 325-34.

    PubMed  CAS  Google Scholar 

  182. Cimino MA, Rotstein CR, Slaughter RL, Emrich LJ, Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy, Am J Med, 1987, 83: 1091-97.

    PubMed  CAS  Google Scholar 

  183. Farber BF, Moellering RC, Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981, Antimicrob Agent Chemother, 1983, 23(1): 138-41.

    CAS  Google Scholar 

  184. Moellering RC, Pharmacokinetics of vancomycin, J Antimicrob Chemother, 1984, 14: 43-52.

    PubMed  CAS  Google Scholar 

  185. Golper TA, Noonan HM, Elzinga L, Gilbert D, Brummett R, Anderson JL, Bennett WM, Vancomycin pharmacokinetics, renal handling and nonrenal clearances in normal human subjects, Clin Pharmacol Ther, 1988, 43(5):565-70.

    PubMed  CAS  Google Scholar 

  186. Sokol, PP, Mechanism of vancomycin transport in the kidney: studies in rabbit renal brush border and basolateral membrane vesicles, Am J Kidney Dis, 1991, 259(3): 1283-87.

    CAS  Google Scholar 

  187. Rodvold KA, Blum RA, Fischer JH, Zokufa HZ, Rotschafer JC, Crossley KB, Riff LJ, Vancomycin pharmacokinetics in patient with various degrees of renal function, Antimicrob Agent Chemother, 1988, 32(6): 848-52.

    CAS  Google Scholar 

  188. Yano Y, Hiraoka A, Oguma T, Enhancement of tobramycin binding to rat renal brush border membrane by vancomycin, J Phar-macol Exp Ther, 1995, 274: 695-99.

    CAS  Google Scholar 

  189. Appel GB, Given DB, Levine LR, Cooper GL, Vancomycin and the kidney, Am J Kidney Dis, 1986, 8: 75-80.

    PubMed  CAS  Google Scholar 

  190. Cantu TG, Yamanaka-Yuen NA, Lietman PS, Serum vancomycin concentrations: reappraisal of their clinical value, Clin Infect Dis, 1994, 18: 533-43.

    PubMed  CAS  Google Scholar 

  191. Moellering RC, Editorial: monitoring serum vancomycin levels: climbing the mountain because it is there?, Clin Infect Dise, 1994, 18: 544-46.

    Google Scholar 

  192. Freeman CD, Quintiliani R, Nightingale CH, Vancomycin therapeutic drug monitoring: is it necessary?, Ann Pharmacother, 1993, 27: 594-98.

    PubMed  CAS  Google Scholar 

  193. Fernanez de Gatta, M, Calvo V, Hernanadez JM, Caballero D, San Miguel JF, Dominguez-Gil A, Cost-effectiveness analysis of serum vancomycin concentration monitoring in patients with hematologic malignancies, Clin Pharmacol Ther, 1996, 60: 332-40.

    Google Scholar 

  194. Leader WG, Chandler MH, Castiglia M, Pharmacokinetic optimization of vancomycin therapy, Clin Pharmacokinet, 1995, 28(4): 327-42.

    PubMed  CAS  Google Scholar 

  195. Karam CM, McKinnon PS, Neuhauser MM, Rybak MJ, Outcome assessment of minimizing vancomycin monitoring and dosing adjustments, Pharmacother, 1999, 19(3), 257-266.

    CAS  Google Scholar 

  196. Darko W, Medicis JJ, Smith A, Guharoy R, Lehmann DF, Mississippi mud no more: cost-effectiveness of pharmacokinetic dosage adjustment of vancomycin to prevent nephrotoxicity, Pharmacother, 2003, 23(5): 643-50 197.

    Google Scholar 

  197. Welty TE, Copa AK, Impact of vancomycin therapeutic drug monitoring on patient care, Ann of Pharmacother, 1994, 28: 1335-39.

    CAS  Google Scholar 

  198. Ocak S, Gorur S, Hakverdi S, Celik S, Erdogan S, Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-ace-tylcysteine on vancomycin-induced nephrotoxicity in rats, Basic Clin Pharmacol Toxicol, 2007, 100: 328-333.

    PubMed  CAS  Google Scholar 

  199. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Ogino T, Inoue M, Okada S, Kinoshita H, Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats, Free Rad Res, 2003, 37(4): 373-79.

    CAS  Google Scholar 

  200. Oktem F, Arslan MK, Ozguner F, Candir O, Yilmaz HR, Ciris M, Uz E, In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine, Toxicol, 2005, 215: 227-33.

    Google Scholar 

  201. Celik I, Cihangiroglu M, Ilhan N, Akpolat N, Akbulut HH, Protective effects of different antioxidants and amrinone on vancomycin-induced nephrotoxicity, Basic Clin Pharmacol Toxicol, 2005, 97: 325-32.

    PubMed  CAS  Google Scholar 

  202. Wood MJ, The comparative efficacy and safety of Teicoplanin and vancomycin, J Antimicrob Chemother, 1996, 37: 209-22.

    PubMed  CAS  Google Scholar 

  203. Rehm SJ, Two new treatment options for infections due to drug-resistant gram-positive cocci, Clev Clin J Med, 2002, 69(5): 397-413.

    Google Scholar 

  204. Schmidt-Ioanas M, de Roux A, Lode H, New antibiotics for the treatment of severe staphylococcal infection in the critically ill patient, Curr Op Crit Care, 2005, 11: 481-86.

    Google Scholar 

  205. Delgado G, Neuhauser MM, Bearden DT, Danziger LH, Quinupristin-Dalfopristin: an overview, Pharmacother, 2000, 20(12): 1469-85.

    CAS  Google Scholar 

  206. Akins RL, Haase KK, Gram positive resistance: pathogens, implications and treatment options, Pharmaother, 2005, 25(7): 1001-10.

    CAS  Google Scholar 

  207. French GL, Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin, J Antimicrob Chemother, 2006, 58: 1107-17.

    PubMed  CAS  Google Scholar 

  208. Rose WE, Rybak MJ, Tigecycline: first of a new class of antimicrobial agents, Pharmacother, 2006, 26(8): 1099-1110.

    CAS  Google Scholar 

  209. Mercier RC, Kennedy C, Meadows C, Antimicrobial activity of tigecycline (GAR-936) against Enterococcus faecium and Staphy-lococcus aureus used alone and in combination, Pharmacother, 2002, 22(12): 1517-23.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Decker, B.S., Molitoris, B.A. (2008). Aminoglycosides and vancomycin. In: De Broe, M.E., Porter, G.A., Bennett, W.M., Deray, G. (eds) Clinical Nephrotoxins. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84843-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84843-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84842-6

  • Online ISBN: 978-0-387-84843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics