Skip to main content

Energy Generating Pathways and the Tumor Suppressor p53

  • Chapter
  • First Online:
Mitochondria and Cancer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora, K. K. and Pedersen, P. L. 1988. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J. Biol. Chem. 263:17422–17428.

    CAS  PubMed  Google Scholar 

  • Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E., Vousden, K. H. 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120.

    Article  CAS  PubMed  Google Scholar 

  • Board, M., Colquhoun, A., Newsholme, E. A. 1995. High Km glucose-phosphorylating (glucokinase) activities in a range of tumor cell lines and inhibition of rates of tumor growth by the specific enzyme inhibitor mannoheptulose. Cancer Res. 55:3278–3285.

    CAS  PubMed  Google Scholar 

  • Boren, J., Cascante, M., Marin, S., Comín-Anduix, B., Centelles, J. J., Lim, S., Bassilian, S., Ahmed, S., Lee, W. N., Boros, L. G. 2001. Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J. Biol. Chem. 276:37747–37753.

    CAS  PubMed  Google Scholar 

  • Bradshaw, P. C. and Pfeiffer, D. R. 2006. Loss of NAD(H) from swollen yeast mitochondria. BMC Biochem. 7:3.

    Article  PubMed  CAS  Google Scholar 

  • Briasoulis, E., Pavlidis, N., Terret, C., Bauer, J., Fiedler, W., Schoffski, P., Raoul, J. L., Hess, D., Selvais, R., Lacombe, D., Bachmann, P., Fumoleau, P. 2003. Glufosfamide administered using a 1-hour infusion given as first-line treatment for advanced pancreatic cancer. A phase II trial of the EORTC-new drug development group. Eur. J. Cancer 39:2334–2340.

    Article  CAS  PubMed  Google Scholar 

  • Bryson, J. M., Coy, P. E., Gottlob, K., Hay, N., Robey, R. B. 2002. Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death. J. Biol. Chem. 277:11392–11400.

    Article  CAS  PubMed  Google Scholar 

  • Capaldi, R. A. 1990. Structure and function of cytochrome c oxidase. Annu. Rev. Biochem. 59:569–596.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., Green, D. R. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran, C. A., Huang, Y. and Sheikh, M. S. 2004. The p53 paddy wagon: COP1, Pirh2 and MDM2 are found resisting apoptosis and growth arrest. Cancer Biol. Ther. 3:721–725.

    Article  CAS  PubMed  Google Scholar 

  • Craig, A. L., Chrystal, J. A., Fraser, J. A., Sphyris, N., Lin, Y., Harrison, B. J., Scott, M. T., Dornreiter, I., Hupp, T. R. 2007. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members. Mol. Cell. Biol. 27:3542–3555.

    Article  CAS  PubMed  Google Scholar 

  • Di Cosimo, S., Ferretti, G., Papaldo, P., Carlini, P., Fabi, A., Cognetti, F. 2003. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc) 39:157–174

    Article  CAS  Google Scholar 

  • Durany, N., Joseph, J., Campo, E., Molina, R., Carreras, J. 1997a. Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and enolase activity and isoenzymes in lung, colon and liver carcinomas. Br. J. Cancer 75:969–977.

    CAS  Google Scholar 

  • Durany, N., Joseph, J., Cruz-Sanchez, F. F., Carreras, J. 1997b. Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and creatine kinase activity and isoenzymes in human brain tumours. Br. J. Cancer 76:1139–1149.

    CAS  Google Scholar 

  • Durany, N., Joseph, J., Jimenez, O. M., Climent, F., Fernandez, P. L., Rivera, F., Carreras, J. 2000. Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br. J. Cancer 82:20–7.

    Article  CAS  PubMed  Google Scholar 

  • Erster, S. and Moll, U. M. 2005. Stress-induced p53 runs a transcription-independent death program. Biochem. Biophys. Res. Commun. 331:843–850.

    Article  CAS  PubMed  Google Scholar 

  • Fang, L., Li, G., Liu, G., Lee, S. W., Aaronson, S. A. 2001. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J. 20:1931–1939.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Z., Hu, W., de Stanchina, E., Teresky, A. K., Jin, S., Lowe, S., Levine, A. J. 2007. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67:3043–3053.

    Article  CAS  PubMed  Google Scholar 

  • Floridi, A., Paggi, M. G., Marcante, M. L., Silvestrini, B., Caputo, A., De Martino, C. 1981. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J. Natl. Cancer Inst. 66:497–499.

    CAS  PubMed  Google Scholar 

  • Floridi, A., Paggi, M. G., D’Atri, S., De Martino, C., Marcante, M. L., Silvestrini, B., Caputo, A. 1981. Effect of lonidamine on the energy metabolism of Ehrlich ascites tumor cells. Cancer Res. 41:4661–4666.

    CAS  PubMed  Google Scholar 

  • Forte, M., Adelsberger-Mangan, D., and Colombini, M. 1987. Purification and characterization of the voltage-dependent anion channel from the outer mitochondrial membrane of yeast. J. Membr. Biol. 99:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Gatenby, R. A. and Gillies, R. J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4:891–899.

    Article  CAS  Google Scholar 

  • Giaccone, G., Smit, E. F., de Jonge, M., Dansin, E., Briasoulis, E., Ardizzoni, A., Douillard, J. Y., Spaeth, D., Lacombe, D., Baron, B., Bachmann, P., Fumoleau, P.; 2004. Glufosfamide administered by 1-hour infusion as a second-line treatment for advanced non-small cell lung cancer; a phase II trial of the EORTC-New Drug Development Group. Eur. J. Cancer 40:667–672.EORTC-New Drug Development Group.

    Article  CAS  PubMed  Google Scholar 

  • Glass-Marmor, L., Beitner, R. 1997. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists. Eur. J. Pharmacol. 328:241–8.

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk, S., Anderson, N., Hainz, C., Eckhardt, S. G., Serkova, N. J. 2004. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin. Cancer Res. 10:6661–6668.

    Article  CAS  PubMed  Google Scholar 

  • Herceg, Z. and Wang, Z. Q. 2001. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477:97–110.

    CAS  PubMed  Google Scholar 

  • Horng, Y. C., Leary, S. C., Cobine, P. A., Young, F. B., George, G. N., Shoubridge, E. A., Winge, D. R. 2005. Human Sco1 and Sco2 function as copper-binding proteins. J. Biol. Chem. 280:34113–34122.

    Article  CAS  PubMed  Google Scholar 

  • Imamura, K., Ogura, T., Kishimoto, A., Kaminishi, M., Esumi, H. 2001. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287:562–567.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. G., Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M. J., Thompson, C. B. 2005. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18:283–293.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H. T. and Hwang, E. S. 2006. 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci. 78:1392–1399.

    Article  CAS  PubMed  Google Scholar 

  • Karuman, P., Gozani, O., Odze, R. D., Zhou, X. C., Zhu, H., Shaw, R., Brien, T. P., Bozzuto, C. D., Ooi, D., Cantley, L. C., Yuan, J. 2001. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7:1307–1319.

    Article  CAS  PubMed  Google Scholar 

  • Katajisto, P., Vallenius, T., Vaahtomeri, K., Ekman, N., Udd, L., Tiainen, M., Makela, T. P. 2007. The LKB1 tumor suppressor kinase in human disease. Biochim. Biophys. Acta. 1775:63–75.

    CAS  PubMed  Google Scholar 

  • Khalimonchuk, O. and Rodel, G. 2005. Biogenesis of cytochrome c oxidase. Mitochondrion 5:363–388.

    Article  CAS  PubMed  Google Scholar 

  • Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Carnero, A., Beach, D. 2005. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65:177–185.

    CAS  PubMed  Google Scholar 

  • Lavin, M. F. and Gueven, N. 2006. The complexity of p53 stabilization and activation. Cell Death Differ. 13:941–950.

    Article  CAS  PubMed  Google Scholar 

  • Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E., George, D. L. 2004. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 6:443–450.

    Article  CAS  PubMed  Google Scholar 

  • Li, P. F., Dietz, R. and von Harsdorf, R. 1999. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 18:6027–6036.

    Article  CAS  PubMed  Google Scholar 

  • Lim, Y. P., Lim, T. T., Chan, Y. L., Song, A. C., Yeo, B. H., Vojtesek, B., Coomber, D., Rajagopal, G., Lane, D. 2007. The p53 knowledgebase: an integrated information resource for p53 research. Oncogene 26:1517–1521.

    Article  CAS  PubMed  Google Scholar 

  • Ludes-Meyers, J. H., Subler, M. A., Shivakumar, C. V., Munoz, R. M., Jiang, P., Bigger, J. E., Brown, D. R., Deb, S. P., Deb, S. 1996. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol. Cell. Biol. 16:6009–6019.

    CAS  PubMed  Google Scholar 

  • Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., Gu, W. 2001. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Z., Saha, A. K., Xiang, X., Ruderman, N. B. 2005. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci. 26:69–76.

    Article  CAS  PubMed  Google Scholar 

  • Macheda, M. L., Rogers, S. and Best, J. D. 2005. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202:654–662.

    Article  CAS  PubMed  Google Scholar 

  • Majewski, N., Nogueira, V., Robey, R. B., Hay, N. 2004a. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol. 24:730–740.

    Article  CAS  Google Scholar 

  • Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., Chandel, N. S., Thompson, C. B., Robey, R. B., Hay, N. 2004b. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16:819–830.

    Article  CAS  Google Scholar 

  • Mathupala, S. P., Rempel, A. and Pedersen, P. L. 1997a. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J. Bioenerg. Biomembr. 29:339–343.

    Article  CAS  Google Scholar 

  • Mathupala, S. P., Heese, C. and Pedersen, P. L. 1997b. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J. Biol. Chem. 272:22776–22780.

    Article  CAS  Google Scholar 

  • Mathupala, S. P., Ko, Y. H. and Pedersen, P. L. 2006. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786.

    Article  CAS  PubMed  Google Scholar 

  • Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P. J., Bunz, F., Hwang, P. M. 2006. p53 regulates mitochondrial respiration. Science 312:1650–1653.

    Article  CAS  PubMed  Google Scholar 

  • McGarrity, T. J. and Amos, C. 2006. Peutz-Jeghers syndrome: clinicopathology and molecular alterations. Cell. Mol. Life Sci. 63:2135–2144.

    Article  CAS  PubMed  Google Scholar 

  • McLure, K. G., Takagi, M. and Kastan, M. B. 2004. NAD+. modulates p53 DNA binding specificity and function Mol. Cell. Biol. 24:9958–9967.

    Article  CAS  PubMed  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., Moll, U. M. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11:577–590.

    Article  CAS  PubMed  Google Scholar 

  • Mohanti, B. K., Rath, G. K., Anantha, N., Kannan, V., Das, B. S., Chandramouli, B. A., Banerjee, A. K., Das, S., Jena, A., Ravichandran, R., Sahi, U. P., Kumar, R., Kapoor, N., Kalia, V. K., Dwarakanath, B. S., Jain, V. 1996. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int. J. Radiat. Oncol. Biol. Phys. 35:103–111.

    CAS  PubMed  Google Scholar 

  • Nakashima, R. A., Mangan, P. S., Colombini, M., Pedersen, P. L. 1986. Hexokinase receptor complex in hepatoma mitochondria: evidence fromN,N'-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry 25:1015–1021.

    Article  CAS  PubMed  Google Scholar 

  • Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., Taya, Y. 2000. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102:849–862.

    Article  CAS  PubMed  Google Scholar 

  • Okamura, S., Ng, C. C., Koyama, K., Takei, Y., Arakawa, H., Monden, M., Nakamura, Y. 1999. Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. Oncol. Res. 11:281–285.

    CAS  PubMed  Google Scholar 

  • Okar, D. A., Manzano, A., Navarro-Sabate, A., Riera, L., Bartrons, R., Lange, A. J. 2001. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 26:30–35.

    Article  CAS  PubMed  Google Scholar 

  • Oren, M. 2003. Decision making by p53: life, death and cancer. Cell Death Differ. 10:431–442.

    Article  CAS  PubMed  Google Scholar 

  • Okorokov, A. L. and Milner, J. 1999. An ATP/ADP-dependent molecular switch regulates the stability of p53-DNA complexes. Mol. Cell. Biol. 19:7501–7510.

    CAS  PubMed  Google Scholar 

  • Ortega-Camarillo, C., Guzman-Grenfell, A. M., Garcia-Macedo, R., Rosales-Torres, A. M., Avalos-Rodriguez, A., Duran-Reyes, G., Medina-Navarro, R., Cruz, M., Diaz-Flores, M., Kumate, J. 2006. Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in RINm5F cells. Mol. Cell. Biochem. 281:163–171.

    Article  CAS  PubMed  Google Scholar 

  • Parry, D. M. and Pedersen, P. L. 1983. Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor. Evidence for an outer mitochondrial membrane location. J. Biol. Chem. 258:10904–10912.

    CAS  PubMed  Google Scholar 

  • Pastorino, J. G., Shulga, N. and Hoek, J. B. 2002. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277:7610–7618.

    Article  CAS  PubMed  Google Scholar 

  • Pelicano, H., Martin, D. S., Xu, R. H., Huang, P. 2006. Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646.

    Article  CAS  PubMed  Google Scholar 

  • Penso, J. and Beitner, R. 1998. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur. J. Pharmacol. 342:113–117.

    Article  CAS  PubMed  Google Scholar 

  • Perfettini, J. L., Kroemer, R. T. and Kroemer, G. 2004. Fatal liaisons of p53 with Bax and Bak. Nat. Cell Biol. 6:386–388.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean, A., Achatz, M. I., Borresen-Dale, A. L., Hainaut, P., Olivier, M. 2007. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165.

    Article  CAS  PubMed  Google Scholar 

  • Prives, C. and Hall, P. A. 1999. The p53 pathway. J. Pathol. 187:112–126.

    Article  CAS  PubMed  Google Scholar 

  • Royds, J. A. and Iacopetta, B. 2006. p53 and disease: when the guardian angel fails. Cell Death. Differ. 13:1017–1026.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano, P., Hixon, M. L., Wagner, M. W., Flores, A. I., Ikawa, S., Baldwin, A. S., Jr.Chien, K. R., Gualberto, A. 1999. p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ. 10:295–306.

    CAS  PubMed  Google Scholar 

  • Rustin, P., Parfait, B., Chretien, D., Bourgeron, T., Djouadi, F., Bastin, J., Rotig, A., Munnich, A. 1996. Fluxes of nicotinamide adenine dinucleotides through mitochondrial membranes in human cultured cells. J. Biol. Chem. 271:14785–14790.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes, M. 2007. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26(57):7825–7832.

    Article  CAS  Google Scholar 

  • Schwartzenberg-Bar-Yoseph, F., Armoni, M. and Karnieli, E. 2004. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633.

    Article  CAS  PubMed  Google Scholar 

  • Seker, H., Bertram, B., Bürkle, A., Kaina, B., Pohl, J., Koepsell, H., Wiesser, M. 2000. Mechanistic aspects of the cytotoxic activity of glufosfamide, a new tumour therapeutic agent. Br. J. Cancer 82:629–634.

    Article  CAS  PubMed  Google Scholar 

  • Selivanova, G. and Wiman, K. G. 2007. Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 26:2243–2254.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., Cantley, L. C. 2004. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA 101:3329–3335.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., Cantley, L. C. 2005. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646.

    Article  CAS  PubMed  Google Scholar 

  • Shoubridge, E. A. 2001. Cytochrome c oxidase deficiency. Am. J. Med. Genet. 106:46–52.

    Article  CAS  PubMed  Google Scholar 

  • Singh, D., Banerji, A. K., Dwarakanath, B. S., Tripathi, R. P., Gupta, J. P., Mathew, T. L., Ravindranath, T., Jain, V. 2005. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol. 181:507–514.

    Article  PubMed  Google Scholar 

  • Smith, T. A. 2000. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci. 57:170–178.

    CAS  PubMed  Google Scholar 

  • Spicer, J. and Ashworth, A. 2004. LKB1 kinase: master and commander of metabolism and polarity. Curr. Biol. 14:R383–R385.

    Article  CAS  PubMed  Google Scholar 

  • Tian, M., Zhang, H., Higuchi, T., Oriuchi, N., Nakasone, Y., Takata, K., Nakajima, N., Mogi, K., Endo, K. 2005. Hexokinase-II expression in untreated oral squamous cell carcinoma: comparison with FDG PET imaging. Ann. Nucl. Med. 194:335–338.

    Article  Google Scholar 

  • Vassilev, L. T. 2007. MDM2 inhibitors for cancer therapy. Trends Mol. Med. 13:23–31.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., Weinberg, R. A. 2001. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159.

    Article  CAS  PubMed  Google Scholar 

  • Veyhl, M., Wagner, K., Volk, C., Gorboulev, V., Baumgarten, K., Weber, W. M., Schaper, M., Bertram, B., Wiessler, M., Koepsell, H. 1998. Transport of the new chemotherapeutic agent beta-D-glucosylisophosphoramide mustard (D-19575) into tumor cells is mediated by the Na+-D-glucose cotransporter SAAT1. Proc. Natl. Acad. Sci. USA 95:2914–2919.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408:307–310.

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O. 1956. On respiratory impairment in cancer cells. Science 124:269–270.

    CAS  PubMed  Google Scholar 

  • Wei, C., Amos, C. I., Stephens, L. C., Campos, I., Deng, J. M., Behringer, R. R., Rashid, A., Frazier, M. L. 2005. Mutation of Lkb1 and p53 genes exert a cooperative effect on tumorigenesis. Cancer Res. 65:11297–11303.

    Article  CAS  PubMed  Google Scholar 

  • Wick, A. N., Drury, D. R. and Morita, T. N. 1955. 2-Deoxyglucose; a metabolic block for glucose. Proc. Soc. Exp. Biol. Med. 89:579–582.

    CAS  PubMed  Google Scholar 

  • Wilson, J. E. and Chung, V. 1989. Rat brain hexokinase: further studies on the specificity of the hexose and hexose 6-phosphate binding sites. Arch. Biochem. Biophys. 269:517–525.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Okar, D. A., Stoeckman, A. K., Peng, L. J., Herrera, A. H., Herrera, J. E., Towle, H. C., Lange, A. J. 2004. A potential role for fructose-2,6-bisphosphate in the stimulation of hepatic glucokinase gene expression. Endocrinology 145:650–658.

    Article  CAS  PubMed  Google Scholar 

  • Xu, D. and Finkel, T. 2002. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 294:245–248.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R. H., Pelicano, H., Zhou, Y., Carew, J. S., Feng, L., Bhalla, K. N., Keating, M. J., Huang, P. 2005. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65:613–621.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, K. A., Nakamura, Y. and Arakawa, H. 2004. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49:134–140.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, P. Y. and Berger, S. L. 2006. LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 66:10701–10708.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Kachhap, S. and Singh, K. K. 2003. Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis 18:287–292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saeed Sheikh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Corcoran, C.A., Huang, Y., Sheikh, M.S. (2009). Energy Generating Pathways and the Tumor Suppressor p53. In: Mitochondria and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84835-8_8

Download citation

Publish with us

Policies and ethics