Skip to main content

MIC: Mutual Information Based Hierarchical Clustering

  • Chapter
Information Theory and Statistical Learning

Clustering is a concept used in a huge variety of applications. We review a conceptually very simple algorithm for hierarchical clustering called in the following the mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X,Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use MIC both in the Shannon (probabilistic) version of information theory, where the “objects” are probability distributions represented by random samples, and in the Kolmogorov (algorithmic) version, where the “objects” are symbol sequences. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and we reconstruct the fetal ECG from the output of independent components analysis (ICA) applied to the ECG of a pregnant woman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://cs.fit.edu/ mmahoney/compression/text.html

  2. Gencompress. http://monod.uwaterloo.ca/downloads/gencompress/

  3. Genebank. http://www.ncbi.nlm.nih.gov

  4. XM-results. ftp://ftp.infotech.monash.edu.au/software/DNAcompress-XM/2007/results.html

    Google Scholar 

  5. Cao, Y., Janke, A., Waddell, P.J., Westerman, M., Takenaka, O., Murata, S., Okada, N., Paabo, S., Hasegawa, M.: Conflict among individual mitochondrial proteins in resolving the phy-logeny of eutherian orders. Journal of Molecular Evolution 47(3), 307–322 (1998)

    Article  Google Scholar 

  6. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Transaction on Information Theory 51, 1523–1545 (2005)

    Article  MathSciNet  Google Scholar 

  7. Cilibrasi, R., Vitanyi, P.M.B.: A new quartet tree heuristic for hierarchical clustering. arXiv:cs/0606048 (2006)

    Google Scholar 

  8. Correa, J.C.: A new estimator of entropy. Communications in Statistics-Theory and Methods 24(10), 2439–2449 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  10. Darbellay, G.A., Vajda, I.: Estimation of the information by an adaptive partitioning of the observation space. IEEE Transactions on Information Theory 45(4), 1315–1321 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daub, C.O., Steuer, R., Selbig, J., Kloska, S.: Estimating mutual information using B-spline functions an improved similarity measure for analysing gene expression data. BMC Bioinfor-matics 5, 118 (2004)

    Article  Google Scholar 

  12. Dobrushin, R.: A simplified method for experimental estimate of the entropy of a stationary sequence. Theory of Probability and Its Applications 3, 462 (1958)

    MATH  Google Scholar 

  13. Dudewicz, E.J., Van der Meulen, E.C.: Entropy-based tests of uniformity. Journal of the American Statistical Association 76(376), 967–974 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ebrahimi, N., Pflughoeft, K., Soofi, E.S.: Two measures of sample entropy. Statistics and Probability Letters 20(3), 225–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. van Es, B.: Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian Journal of Statistics 19(1), 61–72 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Grassberger, P.: Entropy estimates from insufficient samplings. arXiv:physics/0307138 (2003)

    Google Scholar 

  17. Grunwald, P., Vitanyi, P.: Shannon information and Kolmogorov complexity. arXiv:cs/0410002 (2004)

    Google Scholar 

  18. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley, New York (2001)

    Google Scholar 

  19. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  20. Kozachenko, L.F., Leonenko, L.: Sample estimate of the entropy of a random vector. Problems of Information Transmission 23, 95–101 (1987)

    MATH  MathSciNet  Google Scholar 

  21. Kraskov, A., Stogbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical clustering based on mutual information. arXive:q-bio/0311039 (2003)

    Google Scholar 

  22. Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating mutual information. Physical Review E 69(6), 066,138 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kraskov, A., Stogbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical clustering using mutual information. Europhysics Letters, 70(2), 278–284 (2005)

    Article  MathSciNet  Google Scholar 

  24. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P., Zhang, H.Y.: An information-based sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics 17(2), 149–154 (2001)

    Article  Google Scholar 

  25. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.M.B.: The similarity metric. IEEE Transactions on Information Theory 50(12), 3250–3264 (2004)

    Article  MathSciNet  Google Scholar 

  26. Li, M., Vitanyi, P.: An introduction to Kolmogorov complexity and its applications. Springer, New York (1997)

    MATH  Google Scholar 

  27. Bray, N., Pachter, L.: MAVID: Constrained ancestral alignment of multiple sequences. Genome Research 14, 693–699 (2004)

    Article  Google Scholar 

  28. Moon, Y.-I., Rajagopalan, B., Lall, U.: Estimation of mutual information using kernel density estimators Physical Review E 52, 2318–2321 (1995)

    Article  Google Scholar 

  29. Penner, O., Grassberger, P., Paczuski, M.: to be published (2008)

    Google Scholar 

  30. Press, W.H., Teukolski, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, 3rd edn, chap. 16.4. Cambridge University Press, New York (2007)

    Google Scholar 

  31. Reyes, A., Gissi, C., Pesole, G., Catzeflis, F.M., Saccone, C.: Where do rodents fit? evidence from the complete mitochondrial genome of sciurus vulgaris. Molecular Biology and Evolution 17(6), 979–983 (2000)

    Google Scholar 

  32. Reyes, A., Gissi, C., Catzeflis, F., Nevo, E., Pesole, G.: Congruent Mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Molecular Biology and Evolution 21(2), 397–403 (2004)

    Article  Google Scholar 

  33. Stogbauer, H., Kraskov, A., Astakhov, S.A., Grassberger, P.: Least-dependent-component analysis based on mutual information. Physical Review E 70(6), 066,123 (2004)

    Article  Google Scholar 

  34. Strimmer, K., von Haeseler, A.: Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13, 964–969 (1996)

    Google Scholar 

  35. Takens, F.: Detecting strange attractors in turbulence. In: D. Rand, L. Young (eds.) Dynamical Systems and Turbulence, vol. 898, p. 366. Springer, Berlin (1980)

    Chapter  Google Scholar 

  36. Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: 37-th Annual Aller-ton Conference on Communication, Control and Computing, p. 368 (1997)

    Google Scholar 

  37. Tsybakov, A.B., Van der Meulen, E.C.: Root-n consistent estimators of entropy for densities with unbounded support. Scandinavian Journal of Statistics 23(1), 75–83 (1996)

    MATH  MathSciNet  Google Scholar 

  38. Vasicek, O.: Test for normality based on sample entropy. Journal of the Royal Statistical Society Series B-Methodological 38(1), 54–59 (1976)

    MATH  MathSciNet  Google Scholar 

  39. Wieczorkowski, R., Grzegorzewski, P.: Entropy estimators – improvements and comparisons. Communications in Statistics-Simulation and Computation 28(2), 541–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. IEEE Data Compression Conference (DCC), pp. 43–52 (2007)

    Google Scholar 

  41. Yu, Z.G., Mao, Z., Zhou, L.Q., Anh, V.V.: A mutual information based sequence distance for vertebrate phylogeny using complete mitochondrial genomes. Third International Conference on Natural Computation (ICNC 2007), pp. 253–257 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Kraskov or Peter Grassberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kraskov, A., Grassberger, P. (2009). MIC: Mutual Information Based Hierarchical Clustering. In: Emmert-Streib, F., Dehmer, M. (eds) Information Theory and Statistical Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84816-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84816-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84815-0

  • Online ISBN: 978-0-387-84816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics