Skip to main content

The Coagulation System and Angiogenesis

  • Chapter
  • First Online:
Coagulation in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 148))

In 1865, Armand Trousseau recognized the relationship between an activated coagulation system and malignancy [1]. He suggested that patients presenting with idiopathic venous thrombosis might be harboring an occult cancer. Numerous recent studies have also demonstrated an increased odds ratio of patients with idiopathic venous thromboembolic disease having an occult malignancy (i.e. [2]). Venous thromboembolic disease (VTE) is the second most common cause of death in cancer patients, after deaths from the underlying malignancy [3]. The prevalence of VTE depends on tumor type and treatment received. Recent studies note that activation of the coagulation system, in addition to predisposing to VTE, may also contribute directly to the growth of primary and metastatic cancers, in large part by promoting angiogenesis. In this chapter, we will review the role of platelets and the coagulation system in promoting tumor-associated angiogenesis. We will also discuss the effects of anticoagulation on angiogenesis and the effects of antiangiogenesis therapy on the coagulation system and risk of thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khorana AA. Malignancy, thrombosis and Trousseau: the case for an eponym. J Thromb Haemost. 1:2463–2465, 2003.

    Article  PubMed  CAS  Google Scholar 

  2. Prandoni P, Lensing AW, Buller HR, Cogo A, Prins MH, Cattelan AM, Cuppini S, Noventa F, and ten Cate JW. Deep-vein thrombosis and the incidence of subsequent symptomatic cancer. N Engl J Med. 327:1128–1133, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Pruemer J. Prevalence, causes, and impact of cancer-associated thrombosis. Am J Health Syst Pharm. 62:S4–6, 2005.

    PubMed  CAS  Google Scholar 

  4. Rickles FR, and Edwards RL. Activation of blood coagulation in cancer: Trousseau’s syndrome revisited. Blood. 62:14–31, 1983.

    PubMed  CAS  Google Scholar 

  5. Sun NC, McAfee WM, Hum GJ, and Weiner JM. Hemostatic abnormalities in malignancy, a prospective study of one hundred eight patients. Part I. Coagulation studies. Am J Clin Pathol. 71:10–16, 1979.

    PubMed  CAS  Google Scholar 

  6. Sierko E, and Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost. 30:95–108, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Abbasciano V, Bianchi MP, Trevisani L, Sartori S, Gilli G, and Zavagli G. Platelet activation and fibrinolysis in large bowel cancer. Oncology. 52:381–384, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Abbasciano V, Tassinari D, Sartori S, Trevisani L, Arcudi D, Bianchi MP, and Liboni A. Usefulness of coagulation markers in staging of gastric cancer. Cancer Detect Prev. 19:331–336, 1995.

    PubMed  CAS  Google Scholar 

  9. Ferriere JP, Bernard D, Legros M, Chassagne J, Chollet P, Gaillard G, and Plagne R. beta-Thromboglobulin in patients with breast cancer. Am J Hematol. 19:47–53, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Milroy R, Douglas JT, Campbell J, Carter R, Lowe GD, and Banham SW. Abnormal haemostasis in small cell lung cancer. Thorax. 43:978–981, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Yazaki T, Inage H, Iizumi T, Koyama A, Kanoh S, Koiso K, Narita M, and Tojo S. Studies on platelet function in patients with prostatic cancer. Preliminary report. Urology. 30:60–63, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Gasic GJ, Gasic TB, and Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 61:46–52, 1968.

    Google Scholar 

  13. Browder T, Folkman J, and Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis. J Biol Chem. 275:1521–1524, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Folkman J, Browder T, and Palmblad J. Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost. 86:23–33, 2001.

    PubMed  CAS  Google Scholar 

  15. Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, and Wagner DD. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA. 103:855–860, 2006.

    Google Scholar 

  16. Pipili-Synetos E, Papadimitriou E, and Maragoudakis ME. Evidence that platelets promote tube formation by endothelial cells on matrigel. Br J Pharmacol. 125:1252–1257, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Rhee JS, Black M, Schubert U, Fischer S, Morgenstern E, Hammes HP, and Preissner KT. The functional role of blood platelet components in angiogenesis. Thromb Haemost. 92:394–402, 2004.

    PubMed  CAS  Google Scholar 

  18. Ben-Ezra J, Sheibani K, Hwang DL, and Lev-Ran A. Megakaryocyte synthesis is the source of epidermal growth factor in human platelets. Am J Pathol. 137:755–759, 1990.

    PubMed  CAS  Google Scholar 

  19. Daly ME, Makris A, Reed M, and Lewis CE. Hemostatic regulators of tumor angiogenesis: a source of antiangiogenic agents for cancer treatment? J Natl Cancer Inst. 95:1660–1673, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan DR, Chao FC, Stiles CD, Antoniades HN, and Scher CD. Platelet alpha granules contain a growth factor for fibroblasts. Blood. 53:1043–1052, 1979.

    PubMed  CAS  Google Scholar 

  21. Mohle R, Green D, Moore MA, Nachman RL, and Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA. 94:663–668, 1997.

    Google Scholar 

  22. Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, Orpana A, Ristimaki A, Heikinheimo M, Joensuu H, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 80:171–175, 1998.

    PubMed  CAS  Google Scholar 

  23. Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, and Selby PJ. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer. 77:956–964, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Iruela-Arispe ML, Bornstein P, and Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci U S A. 88:5026–5030, 1991.

    Google Scholar 

  25. Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, and Sharpe RJ. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science. 247:77–79, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Italiano JE, Jr., Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, and Klement GL. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 111:1227–1233, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, and Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 96:4216–4221, 2000.

    PubMed  CAS  Google Scholar 

  28. Brill A, Dashevsky O, Rivo J, Gozal Y, and Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 67:30–38, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol. 24:1015–1022, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Morrissey JH. Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost. 86:66–74, 2001.

    PubMed  CAS  Google Scholar 

  31. Walker CP, and Royston D. Thrombin generation and its inhibition: a review of the scientific basis and mechanism of action of anticoagulant therapies. Br J Anaesth. 88:848–863, 2002.

    Article  PubMed  CAS  Google Scholar 

  32. Bajaj MS, Birktoft JJ, Steer SA, and Bajaj SP. Structure and biology of tissue factor pathway inhibitor. Thromb Haemost. 86:959–972, 2001.

    PubMed  CAS  Google Scholar 

  33. Mast AE, Stadanlick JE, Lockett JM, Dietzen DJ, Hasty KA, and Hall CL. Tissue factor pathway inhibitor binds to platelet thrombospondin-1. J Biol Chem. 275:31715–31721, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, et al. Role of tissue factor in embryonic blood vessel development. Nature. 383:73–75, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 380:435–439, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Shoji M, Hancock WW, Abe K, Micko C, Casper KA, Baine RM, Wilcox JN, Danave I, Dillehay DL, Matthews E, et al. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer. Am J Pathol. 152:399–411, 1998.

    PubMed  CAS  Google Scholar 

  37. Zhang Y, Deng Y, Luther T, Muller M, Ziegler R, Waldherr R, Stern DM, and Nawroth PP. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest. 94:1320–1327, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Blum S, Issbruker K, Willuweit A, Hehlgans S, Lucerna M, Mechtcheriakova D, Walsh K, von der Ahe D, Hofer E, and Clauss M. An inhibitory role of the phosphatidylinositol 3-kinase-signaling pathway in vascular endothelial growth factor-induced tissue factor expression. J Biol Chem. 276:33428–33434, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Contrino J, Hair G, Kreutzer DL, and Rickles FR. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med. 2:209–215, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Hair GA, Padula S, Zeff R, Schmeizl M, Contrino J, Kreutzer DL, de Moerloose P, Boyd AW, Stanley I, Burgess AW, et al. Tissue factor expression in human leukemic cells. Leuk Res. 20:1–11, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Guan M, Jin J, Su B, Liu WW, and Lu Y. Tissue factor expression and angiogenesis in human glioma. Clin Biochem. 35:321–325, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. Sawada M, Miyake S, Ohdama S, Matsubara O, Masuda S, Yakumaru K, and Yoshizawa Y. Expression of tissue factor in non-small-cell lung cancers and its relationship to metastasis. Br J Cancer. 79:472–477, 1999.

    Article  PubMed  CAS  Google Scholar 

  43. Nakasaki T, Wada H, Shigemori C, Miki C, Gabazza EC, Nobori T, Nakamura S, and Shiku H. Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. Am J Hematol. 69:247–254, 2002.

    Article  PubMed  CAS  Google Scholar 

  44. Shigemori C, Wada H, Matsumoto K, Shiku H, Nakamura S, and Suzuki H. Tissue factor expression and metastatic potential of colorectal cancer. Thromb Haemost. 80:894–898, 1998.

    PubMed  CAS  Google Scholar 

  45. Seto S, Onodera H, Kaido T, Yoshikawa A, Ishigami S, Arii S, and Imamura M. Tissue factor expression in human colorectal carcinoma: correlation with hepatic metastasis and impact on prognosis. Cancer. 88:295–301, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Koomagi R, and Volm M. Tissue-factor expression in human non-small-cell lung carcinoma measured by immunohistochemistry: correlation between tissue factor and angiogenesis. Int J Cancer. 79:19–22, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. Goldsack NR, Chambers RC, Dabbagh K, and Laurent GJ. Thrombin. Int J Biochem Cell Biol. 30:641–646, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 407:258–264, 2000.

    Article  PubMed  CAS  Google Scholar 

  49. Maloney JP, Silliman CC, Ambruso DR, Wang J, Tuder RM, and Voelkel NF. In vitro release of vascular endothelial growth factor during platelet aggregation. Am J Physiol. 275:H1054–1061, 1998.

    PubMed  CAS  Google Scholar 

  50. Fernandez PM, Patierno SR, and Rickles FR. Tissue factor and fibrin in tumor angiogenesis. Semin Thromb Hemost. 30:31–44, 2004.

    PubMed  CAS  Google Scholar 

  51. Degen JL, Drew AF, Palumbo JS, Kombrinck KW, Bezerra JA, Danton MJ, Holmback K, and Suh TT. Genetic manipulation of fibrinogen and fibrinolysis in mice. Ann N Y Acad Sci. 936:276–290, 2001.

    Article  PubMed  CAS  Google Scholar 

  52. Henschen A, Lottspeich F, Kehl M, and Southan C. Covalent structure of fibrinogen. Ann N Y Acad Sci. 408:28–43, 1983.

    Article  PubMed  CAS  Google Scholar 

  53. Buller HR, van Doormaal FF, van Sluis GL, and Kamphuisen PW. Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost. 5 Suppl 1:246–254, 2007.

    Article  Google Scholar 

  54. Palumbo JS, and Degen JL. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res. 120 Suppl 2:S22–28, 2007.

    Article  Google Scholar 

  55. Rickles FR, Patierno S, and Fernandez PM. Tissue factor, thrombin, and cancer. Chest. 124:58S–68S, 2003.

    Article  PubMed  CAS  Google Scholar 

  56. Lalla RV, Goralnick SJ, Tanzer ML, and Kreutzer DL. Fibrin induces IL-8 expression from human oral squamous cell carcinoma cells. Oral Oncol. 37:234–242, 2001.

    Article  PubMed  CAS  Google Scholar 

  57. Khorana AA, and Fine RL. Pancreatic cancer and thromboembolic disease. Lancet Oncol. 5:655–663, 2004.

    Article  PubMed  CAS  Google Scholar 

  58. Wang H, Doll JA, Jiang K, Cundiff DL, Czarnecki JS, Wilson M, Ridge KM, and Soff GA. Differential binding of plasminogen, plasmin, and angiostatin4.5 to cell surface beta-actin: implications for cancer-mediated angiogenesis. Cancer Res. 66:7211–7215, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Wang H, Schultz R, Hong J, Cundiff DL, Jiang K, and Soff GA. Cell surface-dependent generation of angiostatin4.5. Cancer Res. 64:162–168, 2004.

    Article  PubMed  CAS  Google Scholar 

  60. Sharma MC, and Sharma M. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des. 13:3568–3575, 2007.

    Article  PubMed  CAS  Google Scholar 

  61. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci U S A. 94:10868–10872, 1997.

    Google Scholar 

  62. Gately S, Twardowski P, Stack MS, Patrick M, Boggio L, Cundiff DL, Schnaper HW, Madison L, Volpert O, Bouck N, et al. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res. 56:4887–4890, 1996.

    PubMed  CAS  Google Scholar 

  63. Soff GA. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev. 19:97–107, 2000.

    Article  PubMed  CAS  Google Scholar 

  64. Hanford HA, Wong CA, Kassan H, Cundiff DL, Chandel N, Underwood S, Mitchell CA, and Soff GA. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res. 63:4275–4280, 2003.

    PubMed  CAS  Google Scholar 

  65. Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BK, Wu Z, Grau GE, Shing Y, et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood. 92:4730–4741, 1998.

    PubMed  CAS  Google Scholar 

  66. Lannutti BJ, Gately ST, Quevedo ME, Soff GA, and Paller AS. Human angiostatin inhibits murine hemangioendothelioma tumor growth in vivo. Cancer Res. 57:5277–5280, 1997.

    PubMed  CAS  Google Scholar 

  67. Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, Bigelow K, Heimann R, Gately S, Dhanabal M, et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature. 394:287–291, 1998.

    Article  PubMed  CAS  Google Scholar 

  68. Soff GA, Wang H, Cundiff DL, Jiang K, Martone B, Rademaker AW, Doll JA, and Kuzel TM. In vivo generation of angiostatin isoforms by administration of a plasminogen activator and a free sulfhydryl donor: a phase I study of an angiostatic cocktail of tissue plasminogen activator and mesna. Clin Cancer Res. 11:6218–6225, 2005.

    Article  PubMed  CAS  Google Scholar 

  69. Levine MN, Lee AY, and Kakkar AK. From Trousseau to targeted therapy: new insights and innovations in thrombosis and cancer. J Thromb Haemost. 1:1456–1463, 2003.

    Article  PubMed  CAS  Google Scholar 

  70. McCulloch P, and George WD. Warfarin inhibition of metastasis: the role of anticoagulation. Br J Surg. 74:879–883, 1987.

    Article  PubMed  CAS  Google Scholar 

  71. Neubauer BL, Bemis KG, Best KL, Goode RL, Hoover DM, Smith GF, Tanzer LR, and Merriman RL. Inhibitory effect of warfarin on the metastasis of the PAIII prostatic adenocarcinoma in the rat. J Urol. 135:163–166, 1986.

    PubMed  CAS  Google Scholar 

  72. Colucci M, Delaini F, de Bellis Vitti G, Locati D, Poggi A, Semeraro N, and Donati MB. Warfarin inhibits both procoagulant activity and metastatic capacity of Lewis lung carcinoma cells. Role of vitamin K deficiency. Biochem Pharmacol. 32:1689–1691, 1983.

    Article  PubMed  CAS  Google Scholar 

  73. Brown DC, Purushotham AD, and George WD. Inhibition of pulmonary tumor seeding by antiplatelet and fibrinolytic therapy in an animal experimental model. J Surg Oncol. 55:154–159, 1994.

    Article  PubMed  CAS  Google Scholar 

  74. Nierodzik ML, and Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 10:355–362, 2006.

    Article  PubMed  CAS  Google Scholar 

  75. Karpatkin S. Role of thrombin in tumor angiogenesis, implantation, and metastasis. Pathophysiol Haemost Thromb. 33 Suppl 1:54–55, 2003.

    Article  Google Scholar 

  76. Caunt M, Huang YQ, Brooks PC, and Karpatkin S. Thrombin induces neoangiogenesis in the chick chorioallantoic membrane. J Thromb Haemost. 1:2097–2102, 2003.

    Article  PubMed  CAS  Google Scholar 

  77. Bobek V, and Kovarik J. Antitumor and antimetastatic effect of warfarin and heparins. Biomed Pharmacother. 58:213–219, 2004.

    Article  PubMed  CAS  Google Scholar 

  78. Lundbeck F, Mogensen P, and Jeppesen N. Intravesical therapy of noninvasive bladder tumors (stage Ta) with doxorubicin and urokinase. J Urol. 130:1087–1089, 1983.

    PubMed  CAS  Google Scholar 

  79. Khan O, Hensby CN, and Williams G. Prostacyclin in prostatic cancer: a better marker than bone scan or serum acid phosphatase? Br J Urol. 54:26–31, 1982.

    Article  PubMed  CAS  Google Scholar 

  80. Daly L. The first international urokinase/warfarin trial in colorectal cancer. Clin Exp Metastasis. 9:3–11, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Hettiarachchi RJ, Smorenburg SM, Ginsberg J, Levine M, Prins MH, and Buller HR. Do heparins do more than just treat thrombosis? The influence of heparins on cancer spread. Thromb Haemost. 82:947–952, 1999.

    PubMed  CAS  Google Scholar 

  82. von Tempelhoff GF, Harenberg J, Niemann F, Hommel G, Kirkpatrick CJ, and Heilmann L. Effect of low molecular weight heparin (Certoparin) versus unfractionated heparin on cancer survival following breast and pelvic cancer surgery: a prospective randomized double-blind trial. Int J Oncol. 16:815–824, 2000.

    Google Scholar 

  83. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, Rickles FR, Julian JA, Haley S, Kovacs MJ, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 349:146–153, 2003.

    Article  PubMed  CAS  Google Scholar 

  84. Kakkar AK, Levine MN, Kadziola Z, Lemoine NR, Low V, Patel HK, Rustin G, Thomas M, Quigley M, and Williamson RC. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol. 22:1944–1948, 2004.

    Article  PubMed  CAS  Google Scholar 

  85. Klerk CP, Smorenburg SM, Otten HM, Lensing AW, Prins MH, Piovella F, Prandoni P, Bos MM, Richel DJ, van Tienhoven G, et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol. 23:2130–2135, 2005.

    Article  PubMed  CAS  Google Scholar 

  86. Altinbas M, Coskun HS, Er O, Ozkan M, Eser B, Unal A, Cetin M, and Soyuer S. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost. 2:1266–1271, 2004.

    Article  PubMed  CAS  Google Scholar 

  87. El Accaoui RN, Shamseddeen WA, and Taher AT. Thalidomide and thrombosis. A meta-analysis. Thromb Haemost. 97:1031–1036, 2007.

    PubMed  CAS  Google Scholar 

  88. Goz M, Eren MN, and Cakir O. Arterial thrombosis and thalidomide. J Thromb Thrombolysis. 25:224–226, 2008.

    Article  PubMed  Google Scholar 

  89. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342, 2004.

    Article  PubMed  CAS  Google Scholar 

  90. Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, and Benson AB III. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 25:1539–1544, 2007.

    Google Scholar 

  91. Kabbinavar FF, Schulz J, McCleod M, Patel T, Hamm JT, Hecht JR, Mass R, Perrou B, Nelson B, and Novotny WF. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol. 23:3697–3705, 2005.

    Article  PubMed  CAS  Google Scholar 

  92. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, and Bergsland E. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 21:60–65, 2003.

    Article  PubMed  CAS  Google Scholar 

  93. Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, Dickler M, Overmoyer BA, Reimann JD, Sing AP, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 23:792–799, 2005.

    Article  PubMed  CAS  Google Scholar 

  94. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF III, Gaudreault J, Damico LA, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 22:2184–2191, 2004.

    Google Scholar 

  95. Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, Bergsland E, Ngai J, Holmgren E, Wang J, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 99:1232–1239, 2007.

    Article  PubMed  Google Scholar 

  96. Kuenen BC, Levi M, Meijers JC, Kakkar AK, van Hinsbergh VW, Kostense PJ, Pinedo HM, and Hoekman K. Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor pathway in cancer patients. Arterioscler Thromb Vasc Biol. 22:1500–1505, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Soff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sidhu, G., Soff, G.A. (2009). The Coagulation System and Angiogenesis. In: Kwaan, H., Green, D. (eds) Coagulation in Cancer. Cancer Treatment and Research, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79962-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79962-9_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79961-2

  • Online ISBN: 978-0-387-79962-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics