Skip to main content

Effects of Anticoagulants on Cancer: Heparins

  • Chapter
  • First Online:
Coagulation in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 148))

The association of venous thrombosis and cancer has been recognized since the description by Armand Trousseau in 1865 [1]. In fact, Buller and colleagues have discovered an earlier report by Bouillaud in which he described three patients with cancer and deep vein thrombosis in 1823, some 42 years before the publication by Trousseau [2]. In the past two to three decades there has been increasing interest in the diagnosis, prevention, and treatment of venous thromboembolism associated with cancer [3]. The heparins [unfractionated heparin (UFH) and low molecular weight heparin (LMWH)] have proven efficacy and safety for the prevention of venous thromboembolism (VTE) in a wide variety of cancers including both solid tumors and hematologic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trousseau A. Phlegmasia alba dolens. In: Trousseau A, ed. Clinique Medicinale de l’ Hotel-Dieu de Paris. Paris: Bailliere J.-B. et fils, 1865:645–712.

    Google Scholar 

  2. Bouillaud S. De l'Obliteration des veines et de son influence sur la formation des hydropisies partielles: consideration sur la hydropisies passive et general. Arch Gen Med 1823;1:188–204

    Google Scholar 

  3. Buller HR, Van Doormaal FF, Van Sluis GL, Kamphuisen PW. Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007;5(Suppl.1):246–254

    Article  PubMed  CAS  Google Scholar 

  4. Lyman GH, Khorana AA, Falanga A, et al. American Society of Clinical Oncology Guideline: Recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol 2007;25:5490–5505

    Article  PubMed  CAS  Google Scholar 

  5. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: 8th ACCP conference on antithrombotic and thrombolytic therapy. Chest 2008; 133(6): 381 S–453S.

    Google Scholar 

  6. Bergqvist D, Agnelli G, Cohen AT et al. (the ENOXACAN II Investigator). Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. N Engl J Med 2002;346:975–80.

    Article  PubMed  CAS  Google Scholar 

  7. Buller HR, Agnelli G, Hull RD, Hyers TM, Prins MH, Raskob GE. Antithrombotic therapy for venous thromboembolic disease: 7th ACCP conference on antithrombotic and thrombolytic therapy. Chest 2004;126(4):401S–428S.

    Article  PubMed  CAS  Google Scholar 

  8. Lee AY, Levine MN, Baker RI, et al. Adjusted subcutaneous heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 2003;349:146–153.

    Article  PubMed  CAS  Google Scholar 

  9. Hull RD, Pineo GF, Brant RF, et al. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med. 2006;119(12):1062–72.

    Article  PubMed  CAS  Google Scholar 

  10. Akl EA, van Doormaal FF, Barba M, et al. Parenteral anticoagulation for prolonging survival in patients with cancer who have no other indication for anticoagulation. Cochrane Database of Systemic Reviews 2007, Issue 3. Art No.: CD006652. DOI: 10.1002/14651858.CD006652.

    Google Scholar 

  11. Tagalakis V, Blostein M, Robinson-Cohen C, Kahn SR. The effect of anticoagulants on cancer risk and survival: systemic review. Cancer Treat Rev 2007;33:358–368.

    Article  PubMed  CAS  Google Scholar 

  12. Kuderer NM, Khorana AA, Lyhman GH, Francis CW. A meta-analysis and systemic review of the efficacy and safety of anticoagulants as cancer treatment. Cancer 2007;110:1150–1161.

    Article  Google Scholar 

  13. Lazo-Langner A, Goss GD, Spaans JN, Rodger MA. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb. Haemost 2007;5:729–737

    Article  PubMed  CAS  Google Scholar 

  14. Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: 7th ACCP conference on antithrombotic and thrombolytic therapy. Chest 2004;126(3):188S–203S.

    Article  PubMed  CAS  Google Scholar 

  15. Smorenburg SM, Van Noorden CJ. The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol Rev 2001;53:93–105

    PubMed  CAS  Google Scholar 

  16. Ornstein DI, Zacharski LR. The use of heparin for treating human malignancy. Haemostasis 1999;29(Suppl 1):48–60.

    PubMed  CAS  Google Scholar 

  17. Zacharski LR, Ornstein DL. Heparin and cancer. Thromb Haemost 1998;80:10–23.

    PubMed  CAS  Google Scholar 

  18. Mousa SA, Linhardt R, Francis JL, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin: enoxaparin. Thromb Haemost 2006;96:816

    PubMed  CAS  Google Scholar 

  19. Park P, Lee SK, Son DH, et al. The attenuation of experimental lung metastasis by a bile acid acylated-heparin derivative. Biomaterials 2007;28:2667–2676.

    Article  PubMed  CAS  Google Scholar 

  20. Lee DY, Kim SK, Kim YS, et al. Suppression of angiogenesis and tumor growth by orally active deoxycholic acid-heparin conjugate. Control Release 2007;118:310–3

    Article  CAS  Google Scholar 

  21. Kragh M, Loechel F. Nonanticoagulant heparins: a promising approach for prevention of tumor metastasis (review). Int J Onco1 2005;27:1159–67.

    CAS  Google Scholar 

  22. Chen JL, Jing Hong J, Lu JL, et al. Effect of non-anticoagulant N-desulfated heparin on expression of vascular endothelial growth factor, angiogenesis and metastasis of orthotopic implantation of human gastric carcinoma. World J Gastroenterol 2007;13(3):457–461.

    PubMed  CAS  Google Scholar 

  23. Ludwig RJ, Alban S, Bistrian R, et al. The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on blood borne metastasis in vivo. Thromb Haemost 2006;95:535–40.

    PubMed  CAS  Google Scholar 

  24. Prandoni P, Lensing AWA, Buller HR, et al. Companson of sub­cutaneous low-molecular-weight heparin with intravenous standard heparin in proximal-vein thrombosis. Lancet 1992;339:441–5.

    Article  PubMed  CAS  Google Scholar 

  25. Hull RD, Raskob GE, Pineo GF, et al. Subcutaenous low-molecular­weight heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis. N Engl J Med 1992;326:975–82.

    Article  PubMed  CAS  Google Scholar 

  26. Green D, Hull RD, Brant R, Pineo GF. Lower mortality in cancer patients treated with low molecular weight versus standard heparin. Lancet 1992;339:1476

    Article  PubMed  CAS  Google Scholar 

  27. Gould MK, Dembitzer AD, Doyle RL, et al. Low molecular weight heparins compared with unfractionated heparin for treatment of acute deep vein thrombosis. A meta­analysis of randomized controlled trials. Ann Intern Med 1999;130:800–9.

    PubMed  CAS  Google Scholar 

  28. Von Tempelhoff GF, Harenberg J, Niemann F, et al. Effect of low molecular weight heparin (certoparin) versus unfractionated heparin on cancer survival following breast and pelvic cancer surgery: a prospective randomized double­blind trial. Int J Oncol 2000;16:815–24.

    Google Scholar 

  29. Lebeau B, Chastang C, Brechot JM, et al. Subcutaneous heparin treatment increases survival in small cell lung cancer. “Petites Cellules” Group. Cancer 1994;74:38–45.

    Article  PubMed  CAS  Google Scholar 

  30. Altinbas M, Coskun HS, Er 0, et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost 2004;2:1266–71.

    Article  PubMed  CAS  Google Scholar 

  31. Kakkar AK, Levine MN, Kadziola Z, et al. Low molecular weight heparin therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 2004;22:1944–8.

    Article  PubMed  CAS  Google Scholar 

  32. Klerk CP, Smorenburg SM, Otten HM, et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 2005;23:2130–5.

    Article  PubMed  CAS  Google Scholar 

  33. Sideras K, Schaefer PL, Okuno SH, et al. Low-molecular-weight heparin in patients with advanced cancer: a phase 3 clinical trial. Mayo Clin Proc 2006;81:758–67.

    Google Scholar 

  34. Lee AY, Rickles FR, Julian JA, et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 2005;23:2123–9.

    Article  PubMed  CAS  Google Scholar 

  35. Meyer G, Majanovic Z, Valcke J, et al. Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med 2002;162:1729–35.

    Article  PubMed  CAS  Google Scholar 

  36. Icli F, Akbulut H, Utkan G, et al. Low Molecular Weight Heparin (LMWH) increases the efficacy of cisplatinum plus gemcitabine combination in advanced pancreatic cancer. J Surg Oncol 2007;95:507–12.

    Article  PubMed  CAS  Google Scholar 

  37. von Delius S, Ayvaz M, Wagenpfeil S, Eckel F, Schmid RM, Lersch C. Effect of low-molecular-weight heparin on survival in patients with advanced pancreatic adenocarcinoma. Thromb Haemost 2007;98:434–9.

    Google Scholar 

  38. Szende B, Paku S, Racz G, Kopper L. Effect of fraxiparine and heparin on experimental tumor metastasis in mice. Anticancer Res 2005;25(40):2869–72.

    PubMed  CAS  Google Scholar 

  39. Stevenson JL, Choi SH, Varki A. Differential metastasis inhibition by clinically relevant levels of heparins-correlation with selectin inhibition, not antithrombotic activity. Clin Cancer Res 2005;11:7003–11.

    Article  PubMed  CAS  Google Scholar 

  40. Amirkhosravi A, Mousa SA, Amaya M, Francis JL. Antimetastatic effect of tinzaparin, a low-molecular-weight heparin. J Thromb Haemost 2003;1:1972–1976.

    Article  PubMed  CAS  Google Scholar 

  41. Hostettler N, Naggi A, Torri G, et al. P-selectin and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. FASEB 2007;21:3562–72.

    Article  CAS  Google Scholar 

  42. Mellor P, Harvey JR, Murphy KJ, et al. Modulatory effects of heparin and short-length oligosaccharides of heparin on the metastasis and growth of LMD MDA-MB 231 breast cancer cells in vivo. Br J Cancer 2007;97:761–8.

    Article  PubMed  CAS  Google Scholar 

  43. Pross M, Lippert H, Misselwitz F, et al. Low-molecular-weight heparin (reviparin) diminishes tumor cell adhesion and invasion in vitro, and decreases intraperitoneal growth of colon adeno-carcinoma cells in rats after laparoscopy. Thromb Res 2003;110(4):213–4.

    Article  Google Scholar 

  44. Marchetti M, Vignoli A, Russo L, et al. Endothelial capillary tube formation and cell proliferation induced by tumor cells are affected by low molecular weight heparins and unfractionated heparin. Thromb Res 2008;121(5):637–45.

    Article  PubMed  CAS  Google Scholar 

  45. Mousa SA, Mohamed S. Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inhibitor. Thromb Haemost 2004;92:627–633.

    PubMed  CAS  Google Scholar 

  46. Harvey JR, Mellor P, Eldaly H, Lennard TWJ, Kirby JA, Ali S. Inhibition of CXCR4-mediated breast cancer metastasis: a potential role for heparinoids? Clin Cancer Res 2007;13(5):1562–1570.

    Article  PubMed  CAS  Google Scholar 

  47. Cosgrove RH, Zacharski LR, Racine E, Andersen JC. Improved cancer mortality with low-molecular-weight heparin treatment: a review of the evidence. Semin Thromb Hemost 2002;28:79–88.

    Article  PubMed  CAS  Google Scholar 

  48. Francis JL, Amirkhosravi A. Effect of antihemostatic agents on experimental tumor dissemination. Semin Thromb Hemost 2002;28:29–38.

    Article  PubMed  CAS  Google Scholar 

  49. Rickles FR, Patierno S, Fernandez PM. Tissue factor, thrombin, and cancer. Chest 2003;124(Suppl. 3):58S–68S.

    Article  PubMed  CAS  Google Scholar 

  50. Dvorak HF, Senger DR, Dvorak AM. Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev 1983;2:41–73.

    Article  PubMed  CAS  Google Scholar 

  51. Nagy JA, Brown LF, Senger DR, et al. Pathogenesis of tumor stroma, generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 1989;948:305–326.

    PubMed  CAS  Google Scholar 

  52. van Hinsbergh VW, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 2001;936:426–437.

    Article  PubMed  Google Scholar 

  53. Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S. Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 2004;104:2746–51.

    Article  PubMed  CAS  Google Scholar 

  54. Williams CKO, Pineo GF, Gallus AS, McCulloch PB. The relevance of platelet and fibrinogen kinetics and coagulation studies to extent of disease and performance status in patients with adenocarcinoma. Med Pediatr Oncol 1980;8:367–8.

    Article  PubMed  CAS  Google Scholar 

  55. Yoda Y, Abe T. Fibrinopeptide A (FPA) level and fiblinogen kinetics in patients wih malignant disease. Thromb Haemost 1981;46:706—709.

    PubMed  CAS  Google Scholar 

  56. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988;81:1012–1019.

    Article  PubMed  CAS  Google Scholar 

  57. Nierodzik ML, Chen K, Takeshita K, et al. Protease-activated receptor 1 (PAR-l) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 1998;92:3694–3700.

    PubMed  CAS  Google Scholar 

  58. Fischer EG, Riewald M, Huang HY, et al. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest 1999;104:1213–21.

    Article  PubMed  CAS  Google Scholar 

  59. Rickles FR, Shoji M, Abe K. The role of the hemostatic system in tumor growth, metastasis, and angiogenesis: tissue factor is a bifunctional molecule capable of inducing both fibrin deposition and angiogenesis in cancer. Int J Hematol 2001;73:145–50.

    Article  PubMed  CAS  Google Scholar 

  60. Fernandez PM, Rickles FR. Tissue factor and angiogenesis in cancer. Curr Opin Hematol 2002;9:401–6.

    Article  PubMed  Google Scholar 

  61. Bromberg ME, Konigsberg WH, Madison JF, Pawashe A, Garen A. Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation. Proc Natl Acad Sci USA 1995;92:8205–9.

    Google Scholar 

  62. Kakkar AK, Lemoine NR, Scully MF, Tebbutt S, Williamson RC. Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg 1995;82:1101–4.

    Article  PubMed  CAS  Google Scholar 

  63. Mueller BM, Ruf W. Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis, J Clin Invest 1998;101:1372–8.

    Article  PubMed  CAS  Google Scholar 

  64. Mechtcheriakova D, Wlachos A, Holzmuller H, et al. Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-l. Blood 1999;93:3811–23.

    PubMed  CAS  Google Scholar 

  65. Abe K, Shoji M, Chen J, et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. PNAS 1999;96:8663–8.

    Article  PubMed  CAS  Google Scholar 

  66. Monroe DM, Key NS. The tissue factor-factor VIIa complex: procoagulant activity, regulation, and multitasking. J Thromb Haemost 2007;5:1097–1105.

    Article  PubMed  CAS  Google Scholar 

  67. Vlodavsky I, Friedmann Y, Elkin M, et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 1999;5:793–802.

    Article  PubMed  CAS  Google Scholar 

  68. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999;5:803–809.

    Article  PubMed  CAS  Google Scholar 

  69. Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest 2001;108:169–73.

    PubMed  CAS  Google Scholar 

  70. Liu D, Shriver Z, Qi Y, Venkataraman G, Sasisekharan R. Dynamic regulation of tumor growth and metastasis by heparan sulfate glycosaminoglycans. Semin Thromb Hemost 2002;28(1):67–78.

    Article  PubMed  CAS  Google Scholar 

  71. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996;271:10079–86.

    Article  PubMed  CAS  Google Scholar 

  72. Yang Y, Macleod V, Bendre M, et al. Heparanase promotes spontaneous metastasis of myeloma cells to bone. Blood 2005;105:1303–9.

    Article  PubMed  CAS  Google Scholar 

  73. Friedmann Y, Vlodavsky I, Aingorn H, et al. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol 2000;157:1167–75.

    Article  PubMed  CAS  Google Scholar 

  74. Koliopanos A, Friess H, Kleeff J, et al. Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res 2001;61:4655–9.

    PubMed  CAS  Google Scholar 

  75. Maxhimer JB, Quiros RM, Stewart R, et al. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 2002;132:326–33.

    Article  PubMed  Google Scholar 

  76. Jayson GC, Gallagher JT. Heparin oligosaccharides: inhibitors of the biological activity of bFGF on Caco-2 cells. Br J Cancer 1997;75:9–16.

    Article  PubMed  CAS  Google Scholar 

  77. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 1999;59:3433–41.

    PubMed  CAS  Google Scholar 

  78. Ferro V, Dredge K, Liu L, et al. PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemost 2007;33:557–562.

    Article  PubMed  CAS  Google Scholar 

  79. Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 2002;99:2193–8.

    Google Scholar 

  80. Varki NM, Varki A. Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin Thromb Hemost 2002;28:53–66.

    Article  PubMed  CAS  Google Scholar 

  81. Borsig L. Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Semin Thromb Hemost 2007;33(5):540–6.

    Article  PubMed  CAS  Google Scholar 

  82. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001;98:3352–7.

    Google Scholar 

  83. Wang L, Brown JR, Varki A, Esko JD. Heparin’s anti-inflammatory effects require glucosamine 6-0-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002;110:127–36.

    PubMed  CAS  Google Scholar 

  84. Borgenstrom M, Warri A, Hiilesvuo K, et al. O-Sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis. Semin Thromb Hemost 2007;33(5):547–556.

    Article  PubMed  CAS  Google Scholar 

  85. Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de WL, Senger DR. Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 1995:107:233–5.

    Article  PubMed  CAS  Google Scholar 

  86. Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 2003;22:6524–36.

    Article  PubMed  CAS  Google Scholar 

  87. Ruf W, Dorfleutner A, Riewald M. Specificity of coagulation factor signaling. J Thromb Haemost 2003;1(7):1495–1503.

    Article  PubMed  CAS  Google Scholar 

  88. Belting M, Ahmed J, Ruf W. Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 2005;25:1545–50.

    Article  PubMed  CAS  Google Scholar 

  89. Ruf W. Hemostasis and angiogenesis. In: Khorana AA, Francis CW. Editors. Cancer and thrombosis. New findings in translational science, prevention and treatment. Informa Health Care NY 2008;17–34.

    Google Scholar 

  90. Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983;211:719–725.

    Article  Google Scholar 

  91. Lapierre F, Holme K, Lam L, et al. Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology 1996;6:355–66.

    Article  PubMed  CAS  Google Scholar 

  92. Hasan J, Shnyder SD, Clamp AR, et al. Heparin octasaccharides inhibit angiogenesis in vivo. Clin Cancer Res 2005;11(22):8172–9.

    Article  PubMed  CAS  Google Scholar 

  93. Ratner M. Genentech discloses safety concerns over Avastin. Nat Biotechnol 2004;22(10):1198.

    Article  PubMed  CAS  Google Scholar 

  94. Niers TM, Klerk CP, DiNisio M, et al. Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 2007;61(3):195–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham F. Pineo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pineo, G.F., Hull, R.D. (2009). Effects of Anticoagulants on Cancer: Heparins. In: Kwaan, H., Green, D. (eds) Coagulation in Cancer. Cancer Treatment and Research, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79962-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79962-9_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79961-2

  • Online ISBN: 978-0-387-79962-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics