Skip to main content

Structural Basis of Antibody Protection Against West Nile Virus

  • Chapter
West Nile Encephalitis Virus Infection

Part of the book series: Emerging Infectious Diseases of the 21 Century ((EIDC))

  • 1023 Accesses

Abstract

The structural basis for antibody-mediated neutralization of West Nile virus infection has been investigated by a variety of biophysical and biochemical approaches that have begun to reveal the underlying mechanisms involved in this process. Crystallographic studies of E protein complexed with neutralizing monoclonal antibody Fab fragments have provided detailed information about the residues that are key to the process of antibody–epitope interaction. These studies have been mated to lower resolution cryo-electron microscopy studies that provide structures of bound Fab fragment to native flavivirus virions. The results suggest that antibody-mediated virus neutralization occurs in several different ways that impact the ability of the virus to go forward in its life cycle. Furthermore, these studies have highlighted the dynamic processes that flaviviruses undergo as part of their life cycle. Collectively, these studies suggest new approaches to the design of next generation flavivirus vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison SL, Schalich J, Stiasny K et al. (1995a) Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69:695–700

    CAS  Google Scholar 

  • Allison SL, Stadler K, Mandl CW et al. (1995b) Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form . J Virol 69:5816–5820

    CAS  Google Scholar 

  • Allison SL, Schalich J, Stiasny K et al. (2001) Mutational evidence for an internal fusion pep-tide in flavivirus envelope protein E. J Virol 75:4268–4275

    Article  CAS  PubMed  Google Scholar 

  • Beasley DW, Barrett AD (2002) Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76:13097–13100

    Article  CAS  PubMed  Google Scholar 

  • Bothner B, Dong XF, Bibbs L et al. (1998) Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem 273:673–676

    Article  CAS  PubMed  Google Scholar 

  • Bressanelli S, Stiasny K, Allison SL et al. (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:1–11

    Article  Google Scholar 

  • Crill WD, Chang GJ (2004) Localization and characterization of flavivirus envelope glycopro-tein cross-reactive epitopes. J Virol 78:13975–13986

    Article  CAS  PubMed  Google Scholar 

  • Crill WD, Trainor NB, Chang GJ (2007) A detailed mutagenesis study of flavivirus cross-reactive epitopes using West Nile virus-like particles. J Gen Virol 88:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Nguyen HY, Hanna SL et al. (2006) West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301

    Article  CAS  PubMed  Google Scholar 

  • Dokland T, Walsh M, Mackenzie JM et al. (2004) West Nile virus core protein; tetramer structure and ribbon formation. Structure 12:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Ferlenghi I, Clarke M, Ruttan T et al. (2001) Molecular organization of a recombinant subviral particle from tick-borne encephalitis. Mol Cell 7:593–602

    Article  CAS  PubMed  Google Scholar 

  • Heinz FX, Stiasny K, Puschner-Auer G et al. (1994) Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198:109–117

    Article  CAS  PubMed  Google Scholar 

  • Kanai R, Kar K, Anthony K et al. (2006) Crystal structure of West Nile virus envelope glyco-protein reveals viral surface epitopes. J Virol 80:11000–11008

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann B, Nybakken GE, Chipman PR et al. (2006) West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody . Proc Natl Acad Sci USA 103:12400–12404

    Article  CAS  PubMed  Google Scholar 

  • Kofler RM, Heinz FX, Mandl CW (2002) Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence . J Virol 76:3534–3543

    Article  CAS  PubMed  Google Scholar 

  • Kofler RM, Leitner A, O'Riordain G et al. (2003) Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. J Virol 77:443–451

    Article  CAS  PubMed  Google Scholar 

  • Konishi E, Pincus S, Paoletti E et al. (1992) Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188:714–720

    Article  CAS  PubMed  Google Scholar 

  • Kuhn RJ, Rossmann MG (1995) Virology. When it's better to lie low [news; comment]. Nature 375:275–276

    Article  CAS  PubMed  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG et al. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Article  CAS  PubMed  Google Scholar 

  • Lewis JK, Bothner B, Smith TJ et al. (1998) Antiviral agent blocks breathing of the common cold virus. Proc Natl Acad Sci USA 95:6774–6778

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lok S-M, Yu I-M et al. (2008) Structure of the flavivirus precursor membrane-envelope protein complex and its implication for maturation. Science, 319:1830–1834

    Article  CAS  PubMed  Google Scholar 

  • Lindenbach BD, Thiel H-J, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, HowleyPM(eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1001–1022

    Google Scholar 

  • Lok S-M, Kostyuchenko VA, Nybakken GE et al. (2008) Binding of a neutralizing antibody to dengue virus resulted in an altered surface glycoproteins arrangement . Nat Struct Mol Biol 15:312–317

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Jones CT, Groesch TD et al. (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101:3414–3419

    Article  CAS  PubMed  Google Scholar 

  • Maillard RA, Jordan M, Beasley DW et al. (2008) Long range communication in the envelope protein domain III and its effect on the resistance of West Nile virus to antibody-mediated neutralization. J Biol Chem 283:613–622

    Article  CAS  PubMed  Google Scholar 

  • Mandl CW, Guirakhoo F, Holzmann H et-al. (1989) Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model . J Virol 63:564–571

    CAS  PubMed  Google Scholar 

  • Mason PW, Pincus S, Fournier MJ et al. (1991) Japanese encephalitis virus-vaccinia recom-binants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180:294–305

    Article  CAS  PubMed  Google Scholar 

  • Miller JL, deWet BJM, Martinez-Pomares L et al. (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathogens 4:1–11

    Article  Google Scholar 

  • Modis Y, Ogata S, Clements D et al. (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991

    Article  CAS  PubMed  Google Scholar 

  • Modis Y, Ogata S, Clements D et al. (2004) Structure of the Dengue virus envelope protein after fusion. Nature 427:313–319

    Article  CAS  PubMed  Google Scholar 

  • Modis Y, Ogata S, Clements D et al. (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Kim B-S, Chipman PR et al. (2003) Structure of West Nile virus. Science 303:248

    Article  Google Scholar 

  • Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the Flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  CAS  PubMed  Google Scholar 

  • Nybakken GE, Oliphant T, Johnson S et al. (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437:764–769

    Article  CAS  PubMed  Google Scholar 

  • Nybakken GE, Nelson CA, Chen BR et al. (2006) Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80:11467–11474

    Article  CAS  PubMed  Google Scholar 

  • Oliphant T, Engle M, Nybakken GE et al. (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530

    Article  CAS  PubMed  Google Scholar 

  • Oliphant T, Nybakken GE, Austin SK et al. (2007) Induction of epitope-specific neutralizing antibodies against West Nile Virus. J Virol 81:11828–11839

    Article  CAS  PubMed  Google Scholar 

  • Patkar CG, Jones CT, Chang Y-H et al. (2007) Functional requirements of the yellow fever virus capsid protein. J Virol 81:6471–6481

    CAS  PubMed  Google Scholar 

  • Pierson TC, Xu Q, Nelson S et al. (2007) The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1:135–145

    Article  CAS  PubMed  Google Scholar 

  • Pokidysheva E, Zhang Y, Battisti AJ et al. (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493

    Article  CAS  PubMed  Google Scholar 

  • Rey FA, Heinz FX, Mandl C et al. (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Ă… resolution. Nature (London) 375:291–298

    Article  CAS  PubMed  Google Scholar 

  • Rice CM, Lenches EM, Eddy SR et al. (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733

    Article  CAS  PubMed  Google Scholar 

  • Roehrig JR, Bolin RA, Kelly RG (1998) Monoclonal antibody mapping of the envelope glyco-protein of the dengue 2 virus, Jamaica. Virology 246:317–328

    Article  CAS  PubMed  Google Scholar 

  • Stadler K, Allison SL, Schalich J et al. (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481

    CAS  PubMed  Google Scholar 

  • Stiasny K, Kiermayr S, Holzmann H et al. (2006) Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80:9557–9568

    Article  CAS  PubMed  Google Scholar 

  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al. (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829

    Article  CAS  PubMed  Google Scholar 

  • Throsby M, Geuijen C, Goudsmit J et al. (2006) Isolation and Characterization of Human Monoclonal Antibodies from Individuals Infected with West Nile Virus . J Virol 80:6982–6992

    Article  CAS  PubMed  Google Scholar 

  • van der Schaar HM, Rust MJ, Waarts BL et al. (2007) Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking . J Virol 81:12019–12028

    Article  PubMed  Google Scholar 

  • Yu I-M, Zhang W, Holdaway HA et al. (2008) Structure of immature dengue virus at low pH primes proteolytic maturation. Science, 319:1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chipman PR, Corver J et al. (2003a) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912

    Article  CAS  Google Scholar 

  • Zhang Y, Corver J, Chipman PR et al. (2003b) Structures of immature flavivirus particles. EMBO J 22:2604–2613

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang W, Ogata S et al. (2004) Conformational changes of the flavivirus E glycopro-tein. Structure 12:1607–1618

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kaufmann B, Chipman PR et al. (2007) Structure of immature West Nile Virus. J Virol 81:6141–6145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kuhn, R.J. (2009). Structural Basis of Antibody Protection Against West Nile Virus. In: West Nile Encephalitis Virus Infection. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79840-0_11

Download citation

Publish with us

Policies and ethics