Skip to main content

Low-Power Circuit Design

  • Chapter
  • First Online:
Sensors and Low Power Signal Processing

Abstract

Low-voltage (LV), low-power (LP) circuit design requires special attention on device behavior, and the best circuit topology needs to be chosen to meet the design challenges. With the scaling of MOS devices, supply voltage is reduced with each technological leap, but the threshold voltage and the drain-to-source saturation voltage are not scaling at the same rate because of the subthreshold current consideration in mixed-signal environment. Therefore, conventional circuit design topologies are not best suited for deep submicron (DSM) CMOS design. This chapter is a brief overview of the scaling concept of MOS devices and low-power circuit design topologies using deep submicron CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dennard RH, Cai J, Kumar A (2007) A perspective on today’s scaling challenges and possible future directions. Solid State Electron 51:518–525

    Article  Google Scholar 

  2. Baccarani G, Wordeman MR, Dennard RH (1984) Generalized scaling theory and its application to a 1/4 Micron MOSFET design. IEEE Trans Electron Dev 31(4):452–462

    Article  Google Scholar 

  3. Davari B, Dennard RH, Shahidi GG (1995) CMOS scaling for high performance and low power- the next ten years. Proc IEEE 84(4):595–606

    Article  Google Scholar 

  4. Frank DJ (2002) Power constrained device and technology design for the end of scaling. In: IEDM Technical Digest, pp 643–646

    Google Scholar 

  5. Serdijn WA, Van Der Woerd AC, Roermund AHM, Davidse J (1995) Design principles for low-voltage low-power Analog integrated circuits. Analog Integr Circ Sig Process 8:115–120

    Article  Google Scholar 

  6. Nordholt EH (1983) Design of high-performance negative-feedback amplifier. Elsevier, Amsterdam

    Google Scholar 

  7. Toumazou C, Lidgey FJ, Haigh DW (1990) Analogue IC design: the current-mode approach. Peter Peregrinus, London

    Google Scholar 

  8. Toumazou C, Hughes JB, Banersby NC (1993) Switched currents: an analogue technique for digital technology. Peter Peregrinus, London

    Google Scholar 

  9. Toumazou C, Battersby NC Switched-transcondcutance techniques: a new approach for tunable precision analogue sample-data signal processing. In: Proceeding IEEE ISCAS, Chicago, May 1993

    Google Scholar 

  10. Bult K, Geelen GJGM (1990) A fast-settling CMOS opamp for SC circuits with 90-dB DC gain. IEEE J Solid-State Circuits 25(6):1379–1384

    Article  Google Scholar 

  11. You F(1996) Low voltage analog circuit design, Ph. D. thesis, Texas A&M University, College Station, TX 77843, USA

    Google Scholar 

  12. Laker KR, Sansen WMC (1994) Design of analog integrated circuits and systems. McGraw-Hill, Inc., New York

    Google Scholar 

  13. Eschauzier RGH, Huijsing JH (1995) Frequency compensation techniques for low-power operational amplifiers. Kluwer, Boston, MA

    Google Scholar 

  14. Castello R, Montecchi F, Rezzi F, Baschirotto A (1995) Low-voltage analog filters. IEEE Trans Circuits Syst 42(11):827–840

    Article  Google Scholar 

  15. Crols J, Steyaert M (1994) Switched-opamp: an approach to realize full CMOS switched capacitor circuits at very low power supply voltages. IEEE J Solid-State Circuits 29(8):936–942

    Article  Google Scholar 

  16. Cho TB, Gray PR (1995) A 10 b 20 Msamples/s, 35 mW pipeline A/D converter. IEEE J Solid-State Circuits 30(3):166–172

    Article  Google Scholar 

  17. Baschirotto A, Castello R (1997) A 1-V 1.8-MHz CMOS switched-opamp SC filter with rail-to-rail output swing. IEEE J Solid-State Circuits 32(12):1979–1986

    Article  Google Scholar 

  18. Peluso V, Vancorenland P, Marques AM, Steyaert MSJ, Sansen W (1998) A 900-mV low-power ΔΣ A/D converter with 77-dB dynamic range. IEEE J Solid-State Circuits 33(12):1887–1897

    Article  Google Scholar 

  19. Iwai H (1999) CMOS technology-year 2010 and beyond. IEEE J Solid-State Circuits 34(3):357–366

    Article  MathSciNet  Google Scholar 

  20. Li EH, Ng HC (1991) Parameter sensitivity of narrow channel MOSFET’s. IEEE Electron Device Lett 12(11):608–610

    Article  MATH  Google Scholar 

  21. Yan S, Sanchez-Sinencio E (2000) Low voltage analog circuit design techniques: a tutorial. IEICE Trans Analog Integr Circuits Syst E00-A(2):1–17

    Google Scholar 

  22. Chee YH (2006) Ultra low power transmitter for wireless sensor networks, Ph. D. Dissertation, Dept of Electrical Engineering and Computer Science, University of California, Berkeley, Spring

    Google Scholar 

  23. Guzinski A, Bialko M, Matheau JC (1987) Body driven differential amplifier for application in continuous time active-C filer. In: Proceeding European conference circuit theory and design (ECCTD ’87), pp 315–320

    Google Scholar 

  24. Blalock BJ, Allen PE, Rincon-Mora GA (1998) Design 1-V op amps using standard digital CMOS technology. IEEE Trans Circuits Syst II Analog Digit Signal Process 45(7):769–780

    Article  Google Scholar 

  25. Johns D, Martin K (1997) Analog integrated circuit design. John Wiley & Sons, Inc., New York

    Google Scholar 

  26. Sackinger E, Guggenbuhl W (1988) An analog trimming circuit based on a floating-gate device. IEEE J Solid-State Circuits 23(6):1437–1440

    Article  Google Scholar 

  27. Mehrvarz HR, Kwok CY (1996) A novel multi-input floating-gate MOS four-quadrant analog multiplier. IEEE J Solid-State Circuits 31(8):1123–1131

    Article  Google Scholar 

  28. Yin L, Embabi SHK, Sanchez-Sinencio E (1997) A floating gate MOSFET D/A converter. In: IEEE Proceeding ISCAS ’97, vol 1, pp 409–412

    Google Scholar 

  29. Thomsen A, Brooke MA (1993) A programmable piecewise linear large-signal CMOS amplifier. IEEE J Solid-State Circuits 28(1):84–89

    Article  Google Scholar 

  30. Yu C-G, Geiger RL (1993) Very low voltage operational amplifier using floating gate MOSFETs. In: IEEE Proceeding ISCAS ’93, vol 2, pp 1152–1155

    Google Scholar 

  31. Ramirez-Angulo J, Choi SC, Gonzalez-Altamirano G (1995) Low-voltage circuits building blocks using multiple-input floating-gate transistors. IEEE Trans Circuits Syst I Fundam Theory Appl 42(11):971–974

    Article  Google Scholar 

  32. Galup-Montoro C, Schneider MC, Loss IJB (1994) Series-parallel association of FET’s for high gain and high frequency applications. IEEE J Solid-State Circuits 29:1094–1101

    Article  Google Scholar 

  33. Castello R, Grassi AG, Donati S (1990) A 500-nA sixth order bandpass SC filter. IEEE J Solid-State Circuits 25:669–676

    Article  Google Scholar 

  34. Fujimori I, Sugimoto T (1998) A 1.5 V, 4.1 mW dual-channel audio delta-sigma D/A converter. IEEE J Solid-State Circuits 33:1863–1870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Kamrul Islam .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Islam, S.K., Haider, M.R. (2010). Low-Power Circuit Design. In: Sensors and Low Power Signal Processing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79392-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79392-4_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79391-7

  • Online ISBN: 978-0-387-79392-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics