Skip to main content

Genetics of Lactic Acid Bacteria

  • Chapter
  • 3354 Accesses

Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, J. W. (1987). Bacteriophage taxonomy in 1987. Microbiology Sciences, 4, 214–218.

    CAS  Google Scholar 

  • Alegre, M. T., Rodriguez, M. C., & Mesas, J. M. (2004). Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbioogy Letters, 241, 73–77.

    Article  CAS  Google Scholar 

  • Alpert, C. A., Crutz-Le Coq, A.-M., Malleret, C., & Zagorec, M. (2003). Characterization of a theta-type plasmid from Lactobacillus sakei: A potential basis for low-copy vectors in lactobacilli. Applied and Environmental Microbiology, 69, 5574–5584.

    Article  CAS  Google Scholar 

  • Aukrust, T., & Blom, H. (1992). Transformation of Lactobacillus strains used in meat and vegetable fermentation. Food Research International, 25, 253–261.

    Article  CAS  Google Scholar 

  • Berthier, F., Zagorec, M., Champomier-Vergès, M., Ehrlich, S. D., & Morel-Deville, F. (1996). High-frequency transformation of Lactobacillus sake by electroporation. Microbiology, 142, 1273–1279.

    CAS  Google Scholar 

  • Boekhorst, J., Siezen, R. J., Zwahlen, M. C., Vilanova, D., Pridmore, R. D., Mercenier, A., et al. (2004). The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology, 150, 3601–3611.

    Article  CAS  Google Scholar 

  • Bringel, F., Frey, L., & Hubert, J. C. (1989). Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid from Lactobacillus plantarum CCM1904 and its use in shuttle vector construction. Plasmid, 22, 193–202.

    Article  CAS  Google Scholar 

  • Bron, P. A., Benchimol, M. G., Lambert, J., Palumbo, E., Deghorain, M., Delcour, J., et al. (2002). Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Applied and Environmental Microbiology, 68, 5663–5670.

    CAS  Google Scholar 

  • Caldwell, S. L., McMahon, D. J., Oberg, C. J., & Broadbent, J. R. (1999). Induction and characterization of Pediococcus acidilactici temperate bacteriophage. Systematic and Applied Microbiology, 22, 514–519.

    Google Scholar 

  • Chaillou, S., Champomier-Vergès, M. C., Cornet, M., Crutz Le Coq, A.-M., Dudez, A.-M., et al. (2005). Complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nature Biotechnology, 23, 1527–1533.

    Article  CAS  Google Scholar 

  • Chen, J. D., & Morrison, D. A. (1988). Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene, 64, 155–164.

    Article  CAS  Google Scholar 

  • Cosby, W. M., Axelsson, L. T., & Dobrogosz, W. J. (1989). Tn917 transposition in Lactobacillus plantarum using the highly temperature-sensitive plasmid pTV1Ts as a vector. Plasmid, 22, 236–243.

    Article  CAS  Google Scholar 

  • Danielsen, M. (2002). Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid, 48, 98–103.

    Article  CAS  Google Scholar 

  • Doi, K., Zhang, Y., Nishizaki, Y., Umeda, A., Ohmomo, S., & Ogata, S. (2003). A comparative study and phage typing of silage-making Lactobacillus bacteriophages. Journal of Bioscience and Bioengineering, 95, 518–525.

    CAS  Google Scholar 

  • Ferain, T., Hobbs, J. N., Jr., Richardson, J., Bernard, N., Garmyn, D., Hols, P., et al. (1996). Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. Journal of Bacteriology, 178, 5431–5437.

    CAS  Google Scholar 

  • Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: The agents of open source evolution. Nature Reviews Microbiology, 3, 722–732.

    Article  CAS  Google Scholar 

  • Gevers, D., Danielsen, M., Huys, G., & Swings, J. (2003). Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Applied and Environmental Microbiology, 69, 1270–1275

    Article  CAS  Google Scholar 

  • Gevers, D., Huys, G., & Swings, J. (2003). In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiology Letters, 225, 125–130.

    Article  CAS  Google Scholar 

  • Giacomini, A., Squartini, A., & Nuti, M. P. (2000). Nucleotide sequence and analysis of plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) involved in pediocin A production. Plasmid, 43, 111–122.

    Article  CAS  Google Scholar 

  • Gonzalez, C. F., & Kunka, B. S. (1983). Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501. Applied and Environmental Microbiology, 46, 81–89.

    CAS  Google Scholar 

  • Gonzalez, C. F., & Kunka, B. S. (1986). Evidence for plasmid linkage of raffinose utilization and associated alpha-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Applied and Environmental Microbiology, 51, 105–109.

    CAS  Google Scholar 

  • Gonzalez, C. F., & Kunka, B. S. (1987). Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Applied and Environmental Microbiology, 53, 2534–2538.

    CAS  Google Scholar 

  • Gory, L., Montel, M. C., & Zagorec, M. (2001) Use of Green Fluorescent Protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiology Letters, 194, 127–133.

    Article  CAS  Google Scholar 

  • Graham, D. C., & McKay, L. L. (1985). Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Applied and Environmental Microbiology, 50, 532–534.

    CAS  Google Scholar 

  • Gury, J., Barthelmebs, L., & Cavin, J. F. (2004). Random transposon mutagenesis of Lactobacillus plantarum by using the pGh9:ISS1 vector to clone genes involved in the regulation of phenolic acid metabolism. Archives in Microbiology, 182, 337–345.

    Article  CAS  Google Scholar 

  • Halami, P. M., Ramesh, A., & Chandrashekar, A. (2000). Megaplasmid encoding novel sugar utilizing phenotypes, pediocin production and immunity in Pediococcus acidilactici C20. Food Microbiology, 17, 475–483.

    Article  CAS  Google Scholar 

  • Hammes, W. P., & Hertel, C. (1998). New development in meat starter culture. Meat Science, 49, S125–S128.

    Article  Google Scholar 

  • Hertel, C., Schmidt, G., Fischer, M., Oellers, K., & Hammes, W. P. (1998). Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Applied and Environmental Microbiology, 64, 1359–1365.

    CAS  Google Scholar 

  • Kakikawa, M., Yamakawa, A., Yokoi, K. J., Nakamura, S., Taketo, A., & Kodaira K. (2002) Characterization of the major tail protein gpP encoded by Lactobacillus plantarum phage phi gle. Journal of Biochemistry, Molecular Biology, and Biophysics, 6, 185–191.

    Article  CAS  Google Scholar 

  • Kakikawa, M., Yokoi, K. J., Kimoto, H., Nakano, M., Kawasaki, K., Taketo, A., et al. (2002). Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phi g1e. Gene, 299, 227–234.

    Article  CAS  Google Scholar 

  • Kanatani, K., & Oshimura, M. (1994). Plasmid-associated bacteriocin production by a Lactobacillus plantarum strain. Bioscience Biotechnology Biochemistry, 58, 2084–2086.

    CAS  Google Scholar 

  • Kantor, A., Montville, T. J., Mett, A., & Shapira, R. (1997). Molecular characterization of the replicon of the Pediococcus pentosaceus 43200 pediocin A plasmid pMD136. FEMS Microbiology Letters, 151, 237–244.

    Article  CAS  Google Scholar 

  • Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., et al. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Science USA, 100, 1990–1995.

    Article  CAS  Google Scholar 

  • Langella, P., Zagorec, M., Ehrlich, S. D., & Morel-Deville, F. (1996). Intergeneric and intrageneric conjugal transfer of plasmids pAMβ 1, pIL205 and pIP501 in Lactobacillus sake. FEMS Microbiology Letters, 139, 51–56.

    Google Scholar 

  • Leer, R. J., Christiaens, H., Verstraete, W., Peters, L., Posno, M., & Pouwels, P. H. (1993). Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Molecular and GeneralGenetics, 239, 269–272.

    CAS  Google Scholar 

  • Leloup, L., Ehrlich, S. D., Zagorec, M., & Morel-Deville, F. (1997). Single cross-over integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Applied and Environmental Microbiology, 63, 2127–2133.

    Google Scholar 

  • Leuschner, R. G. K., Arendt, E. K., & Hammes, W. P. (1993). Characterization of a virulentLactobacillus sake phage PWH2. Applied Microbiology and Biotechnology, 39, 617–621.

    Article  CAS  Google Scholar 

  • Li, Y., Canchaya, C., Fang, F., Raftis, E., Ryan, K. A., van Pijkeren, J. P., et al. (2007). Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. Journal of Bacteriology, 189, 6128–6139.

    Article  CAS  Google Scholar 

  • Liu, M. L., Kondo, J. K., Barnes, M. B., & Bartholomew, D. T. (1988). Plasmid-linked maltose utilization in Lactobacillus ssp. Biochimie, 70, 351–355.

    Article  CAS  Google Scholar 

  • Lu, Z., Altermann, E., Breidt, F., Predki, P., Fleming, H. P., & Klaenhammer, T. R. (2005). Sequence analysis of the Lactobacillus plantarum bacteriophage PhiJL-1. Gene, 348, 45–54.

    Article  CAS  Google Scholar 

  • Lu, Z., Breidt, F. Jr., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, phiJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84, 225–235.

    CAS  Google Scholar 

  • Luchansky, J. B., Muriana, P. M., & Klaenhammer, T. R. (1988). Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Molecular Microbiology, 2, 637–646.

    Article  CAS  Google Scholar 

  • Maguin, E., Prévost, H., Ehrlich, S. D., & Gruss, A. (1996). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. Journal of Bacteriology, 178, 931–935.

    CAS  Google Scholar 

  • Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., et al. (2006). Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Science USA, 103, 15611–15616.

    Article  Google Scholar 

  • Malleret, C., Lauret, R., Ehrlich, S. D., Morel-Deville, F., & Zagorec, M. (1998). Disruption of the sole ldhL gene in Lactobacillus sakei prevents the production of both l- and d-lactate. Microbiology, 144, 3327–3333.

    Article  CAS  Google Scholar 

  • Mayo, B., Gonzalez, B., Arca, P., & Suarez, J. E. (1994). Cloning and expression of the plasmid encoded beta-D-galactosidase gene from a Lactobacillus plantarum strain of dairy origin. FEMS Microbiology Letters, 122, 145–151.

    Article  CAS  Google Scholar 

  • Miller, K. W., Ray, P., Steinmetz, T., Hanekamp, T., & Ray, B. (2005). Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Letters in Applied Microbiology, 40, 56–62.

    Article  CAS  Google Scholar 

  • Motlagh, A., Bukhtiyarova, M., & Ray, B. (1994). Complete nucleotide sequence of pSMB74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Letters in Applied Microbiology, 18, 305–312.

    Article  CAS  Google Scholar 

  • Naumoff, D. G. (2001). Beta-fructosidase superfamily: Homology with some alpha-l-arabinases and beta-d-xylosidases. Proteins, 42, 66–76.

    Article  CAS  Google Scholar 

  • Nes, I.. F. (1984). Plasmid profiles of ten strains of Lactobacillus plantarum. FEMS Microbiology Letters, 21, 359–361.

    Article  CAS  Google Scholar 

  • Nes, I. F., Brendehaug, J., & von Husby, K. O. (1988). Characterization of the bacteriophage B2 of Lactobacillus plantarum ATCC 8014. Biochimie, 70, 423–427.

    Article  CAS  Google Scholar 

  • Osmanagaoglu, O., Beyatli, Y., & Gunduz, U. (2000). Cloning and expression of a plasmid-linked pediocin determinant trait of Pediococcus acidilactici F. Journal of Basic Microbiology, 40, 41–49.

    Article  CAS  Google Scholar 

  • Pérez Pulido, R., Abriouel, H., Ben Omar, N., Lucas López, R., Martínez Canamero, M., & Gálvez, A. (2006). Plasmid profile patterns and properties of pediococci isolated from caper fermentations. Journal of Food Protection, 69, 1178–1182.

    Google Scholar 

  • Rodríguez, M. C., Alegre, M. T., & Mesas, J. M. (2007). Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid, 58, 44–50.

    Article  CAS  Google Scholar 

  • Romero, D. A., & Klaenhammer, T. R. (1992). IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 58, 699–702.

    CAS  Google Scholar 

  • Ruiz-Barba, J. L., Piard, J. C., & Jiménez-Díaz, R. (1991). Plasmid profiles and curing of plasmids in Lactobacillus plantarum strains isolated from green olive fermentations. Journal of Applied Bacteriology, 71, 417–421.

    CAS  Google Scholar 

  • Shareck, J., Choi, Y., Lee, B., & Miguez, C. B. (2004). Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: Their characteristics and potential applications in biotechnology. Critical Reviews in Biotechnology, 24, 155–208.

    Article  CAS  Google Scholar 

  • Shay, B. J., Egan, A. F., Wright, M., & Rogers, P. J. (1988). Cystein metabolism in an isolate of Lactobacillus sake: Plasmid composition and cystein transport. FEMS Microbiology Letters, 56, 183–188.

    Article  CAS  Google Scholar 

  • Simon, L., Frémaux, C., Cenatiempo, Y., & Berjeaud, J.-M. (2002). Sakacin G, a new type of antilisterial bacteriocin. Applied and Environmental Microbiology, 68, 6416–6420.

    Article  CAS  Google Scholar 

  • Skaugen, M., Abildgaard, C. I., & Nes, I. F. (1997). Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Molecular and General Genetics, 253, 674–686.

    Article  CAS  Google Scholar 

  • Sørvig, E., Mathiesen, G., Naterstad, K., Eijsink, V. G., & Axelsson, L. (2005). High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology, 151, 2439–2449.

    Article  CAS  Google Scholar 

  • Stentz, R., Loizel, C., Malleret, C., & Zagorec, M. (2000). Development of genetic tools for Lactobacillus sakei: Disruption of the β -galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Applied and Environmental Microbiology, 66, 4272–4278.

    Article  CAS  Google Scholar 

  • Stentz, R., & Zagorec, M. (1999). Ribose utilization in Lactobacillus sakei: Analysis of the regulation of the rbs operon and putative involvement of a new transporter. Journal of Molecular Microbiology and Biotechnology, 1, 165–173.

    CAS  Google Scholar 

  • Takala, T. M., & Saris, P. E. (2002). A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Applied Microbiology and Biotechnology, 59, 467–471.

    Article  CAS  Google Scholar 

  • Takala, T. M., Saris, P. E., & Tynkkynen, S. S. (2003). Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG. Applied Microbiology and Biotechnology, 60, 564–570.

    CAS  Google Scholar 

  • Talon, R., Leroy, S., & Lebert, I. (2007). Microbial ecosystems of traditional fermented meat products: the importance of indigenous starters. Meat Science, 77, 55–62.

    Article  CAS  Google Scholar 

  • Van Reenen, C. A., Van Zyl, W. H., & Dicks, L. M. (2006). Expression of the immunity protein of plantaricin 423, produced by Lactobacillus plantarum 423, and analysis of the plasmid encoding the bacteriocin. Applied and Environmental Microbiology, 72, 7644–7651.

    Article  CAS  Google Scholar 

  • Vaughan, A., Eijsink, V. G., & Van Sinderen, D. (2003). Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Applied and Environmental Microbiology, 69, 7194–7203.

    Article  CAS  Google Scholar 

  • Ventura, M., Canchaya, C., Kleerebezem, M., de Vos, W. M., Siezen, R. J., & Brüssow, H. (2003). The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology, 316, 245–255.

    Article  CAS  Google Scholar 

  • Vogel, R. F., Becke-Schmid, M., Entgens, P., Gaier, W., & Hammes, W. P. (1992). Plasmid transfer and segregation in Lactobacillus curvatus LTH1432 in vitro and during sausage fermentations. Systematics and Applied Microbiology, 15, 129–136.

    Google Scholar 

  • Vogel, R. F., Lohmann, M., Weller, A. N., Hugas, M., & Hammes, W. P. (1991). Structural similarity and distribution of small cryptic plasmids of Lactobacillus curvatus and Lactobacillus sake. FEMS Microbiology Letters, 68, 183–190.

    Article  CAS  Google Scholar 

  • Wang, T. T., & Lee, B. H. (1997). Plasmids in Lactobacillus. Critical Reviews in Biotechnology, 17, 227–272.

    Article  CAS  Google Scholar 

  • West, C. A., & Warner, P. J. (1985). Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Applied and Environmental Microbiology, 50, 1319–1321.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zagorec, M., Anba-Mondoloni, J., Coq, AM.CL., Champomier-Vergès, MC. (2008). Genetics of Lactic Acid Bacteria. In: Toldrá, F. (eds) Meat Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79382-5_6

Download citation

Publish with us

Policies and ethics