DNA-Based Traceability of Meat

  • G.H. Shackell
  • K.G. Dodds

Definitions of meat traceability are as varied as the people who write them. In essence, they have been encapsulated by McKean (2001) who defined traceability of meat as “the ability to maintain a credible custody of identification for animals or animal products through various steps within the food chain from the farm to the retailer”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. (2002). Source of deadly US listeria outbreak unknown. Retrieved October 21, 2002, from http://www.foodnavigator.com.
  2. Arana, A., Soret, B., Lasa, I., & Alfonso, L. (2002). Meat traceability using DNA markers: Application to the beef industry. Meat Science, 61, 367–373.CrossRefGoogle Scholar
  3. Aranishi, F., Okimoto, T., & Izumi, S. (2005). Identification of gadoid species (Pisces, Gadidae) by PCR-RFLP analysis. Journal of Applied Genetics,46(1), 69–73.Google Scholar
  4. Aumaître, A. (1999). Quality and safety of animal products. Livestock Production Science,59(2–3), 113–124.CrossRefGoogle Scholar
  5. Ayres, K. L., & Overall, A. D. J. (2004). api-calc 1.0: A computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Molecular Ecology Notes,4(2), 315–318.CrossRefGoogle Scholar
  6. Bernués, A., Olaizola, A., & Corcoran, K. (2003). Labelling information demanded by European consumers and relationships with purchasing motives, quality and safety of meat. Meat Science,65(3), 1095–1106.CrossRefGoogle Scholar
  7. Blott, S. C., Williams, J. L., & Haley, C. S. (1999). Discriminating among cattle breeds using genetic markers. Heredity,82(Part 6), 613–619.CrossRefGoogle Scholar
  8. Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends in Ecology & Evolution,18(10), 503–511.CrossRefGoogle Scholar
  9. Buckleton, J., & Triggs, C. (2006). The effect of linkage on the calculation of DNA match probabilities for siblings and half siblings. Forensic Science International,160(2–3), 193–199.CrossRefGoogle Scholar
  10. Buncic, S., McKinstry, J., Reid, C. A., & Anil, M. H. (2002). Spread of microbial contamination associated with penetrative captive bolt stunning of food animals. Food Control, 13(6–7),425–430.CrossRefGoogle Scholar
  11. Cagney, C., Crowley, H., Duffy, G., Sheridan, J. J., O’Brien, S., Carney, E., et al. (2004). Prevalence and numbers of Escherichia coli O157:H7 in minced beef and beef burgers from butcher shops and supermarkets in the Republic of Ireland. Food Microbiology,21(2), 203–212.CrossRefGoogle Scholar
  12. Calvo, J. H., Osta, R., & Zaragoza, P. (2002). Quantitative PCR detection of pork in raw and heated ground beef and pâté. Journal of Agricultural and Food Chemistry,50(19), 5265–5267.CrossRefGoogle Scholar
  13. Caporale, V., Giovannini, A., Di Francesco, C., & Calistri, P. (2001). Importance of the traceability of animals and animal products in epidemiology. OIE Revue Scientifique et Technique,20(2), 372–378.Google Scholar
  14. Castaldo, D. (2003). Brazilian beef labeled Irish. Retrieved September 26, 2003, from MeatNews.com.Google Scholar
  15. Cavani, C., & Petracci, M. (2004). Rabbit meat processing and traceability. Proceedings of the 8th World Rabbit Congress, 1318–1336.Google Scholar
  16. Che Man, Y. B., Aida, A. A., Raha, A. R., & Son, R. (2007). Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for halal verification. Food Control,18(7), 885–889.Google Scholar
  17. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., et al. (1996). Accessing genetic information with high-density DNA arrays. Science,274(5287), 610–614.CrossRefGoogle Scholar
  18. Ciampolini, R., Cetica, V., Ciani, E., Mazzanti, E., Fosella, X., Marroni, F., et al. (2006). Statistical analysis of individual assignment tests among four cattle breeds using fifteen STR loci. Journal of Animal Science,84(1), 11–19.Google Scholar
  19. Ciampolini, R., Leveziel, H., Mazzanti, E., Grohs, C., & Cianci, D. (2000). Genomic identification of the breed of an individual or its tissue. Meat Science,54(1), 35–40.CrossRefGoogle Scholar
  20. Clemens, R. (2003). Meat traceability in Japan. Iowa Ag Review,9(4), 4–5.Google Scholar
  21. Colombo, F., Marchisio, E., Pizzini, A., & Cantoni, C. (2002). Identification of the goose species (Anser anser) in Italian “Mortara” salami by DNA sequencing and a Polymerase Chain Reaction with an original primer pair. Meat Science,61(3), 291–294.CrossRefGoogle Scholar
  22. Cooper, D. N., Smith, B. A., & Cooke, H. J. (1985). An estimate of unique DNA sequence heterozygosity in the human genome. Human Genetics,69(3), 201–205.CrossRefGoogle Scholar
  23. Cornuet, J. M., Piry, S., Luikart, G., Estoup, A., & Solignac, M. (1999). New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics,153(4), 1989–2000.Google Scholar
  24. Cunningham, E. P., & Meghen, C. M. (2001). Biological identification systems: genetic markers. Scientific and Technical Review of the Office International des Épizooties,20(2), 491–499.Google Scholar
  25. Di Pinto, A., Forte, V. T., Conversano, M. C., & Tantillo, G. M. (2005). Duplex polymerase chain reaction for detection of pork meat in horse meat fresh sausages from Italian retail sources. Food Control,16(5), 391–394.Google Scholar
  26. Dickinson, D. L., & Bailey, D. (2002). Meat traceability: Are U.S. consumers willing to pay for it? Journal of Agricultural and Resource Economics,27(2), 348–364.Google Scholar
  27. Dodds, K. G., & Shackell, G. H. (2004). The number of alleles seen in a mixture. Abstract MTU42. Paper presented at the XXIInd International Biometric Conference, Cairns, Australia.Google Scholar
  28. Dodds, K. G., Tate, M. L., McEwan, J. C., & Crawford, A. M. (1996). Exclusion probabilities for pedigree testing farm animals. Theoretical and Applied Genetics, 92, 966–975.CrossRefGoogle Scholar
  29. ElAmin, A. (2006). Belgium, Netherlands meat sectors face dioxin crisis. Retrieved January 31, 2006, from http://www.foodproductiondaily.com.
  30. Evans, M. R., Lane, W., Frost, J. A., & Nylen, G. (1998). A campylobacter outbreak associated with stir-fried food. Epidemiology and Infection,121(2), 275–279.CrossRefGoogle Scholar
  31. Evett, I. W., & Weir, B. S. (1998). Interpreting DNA evidence—statistical genetics for forensic scientists. Sunderland, MA: Sinauer Associates.Google Scholar
  32. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics (4th ed.). Harlow, Essex: Addison Wesley Longman.Google Scholar
  33. García, D., Martínez, A., Dunner, S., Vega-Pla, J. L., Fernández, C., Delgado, J. V., & Cañón, J. (2006). Estimation of the genetic admixture composition of Iberian dry-cured ham samples using DNA multilocus genotypes. Meat Science,72(3), 560–566.Google Scholar
  34. Georges, M., Lathrop, M., Hilbert, P., Marcotte, A., Schwers, A., Swillens, S., et al. (1990). On the use of DNA fingerprints for linkage studies in cattle. Genomics,6(3), 461–474.CrossRefGoogle Scholar
  35. Göring, H., & Ott, J. (1997). Relationship estimation in affected sib pair analysis of late-onset diseases. European Journal of Human Genetics,5(2), 69–77.Google Scholar
  36. Haley, C. S. (1995). Livestock QTLs – bringing home the bacon. Trends in Genetics, 11(12),488–492.CrossRefGoogle Scholar
  37. Håstein, T., Hill, B. J., Berthe, F., & Lightner, D. V. (2001). Traceability of aquatic animals. Scientific and Technical Review of the Office International des Épizooties,20(2), 564–583.Google Scholar
  38. Hayes, B., Sonesson, A. K., & Gjerde, B. (2005). Evaluation of three strategies using DNA markers for traceability in aquaculture species. Aquaculture, 250(1–2), 70.CrossRefGoogle Scholar
  39. Heaton, M. P., Keen, J. E., Clawson, M. L., Harhay, G. P., Bauer, N., Shultz, C., et al. (2005). Use of bovine single nucleotide polymorphism markers to verify sample tracking in beef processing. Journal of the American Veterinary Medical Association,226(8), 1311–1314.CrossRefGoogle Scholar
  40. Hoban, T. J. (1997). Consumer acceptance of biotechnology: An international perspective. Nature Biotechnology,15(3), 232–234.CrossRefGoogle Scholar
  41. Hobbs, A. L., Hobbs, J. E., Isaac, G. E., & Kerr, W. A. (2002). Ethics, domestic food policy and trade law: Assessing the EU animal welfare proposal to the WTO. Food Policy, 27(5–6), 437–454. CrossRefGoogle Scholar
  42. Hobbs, J. E., Bailey, D., Dickinson, D. L., & Haghiri, M. (2005). Traceability in the Canadian red meat sector: Do consumers care? Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie,53(1), 47–65.Google Scholar
  43. Israel, C., & Weller, J. I. (2000). Effect of misidentification on genetic gain and estimation of breeding value in dairy cattle populations. Journal of Dairy Science,83(1), 181–187.CrossRefGoogle Scholar
  44. Janssen, F. W., Hägele, G. H., Buntjer, J. B., & Lenstra, J. A. (1998). Species identification in meat by using PCR-generated satellite probes. Journal of Industrial Microbiology and Biotechnology, 21 (3), 115–120.CrossRefGoogle Scholar
  45. Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Individual-specific ’fingerprints’ of human DNA. Nature,316(6023), 76–79.CrossRefGoogle Scholar
  46. Kim, J. S., Lee, G. G., Park, J. S., Jung, Y. H., Kwak, H. S., Kim, S. B., et al. (2007). A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escheria coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes and Vibrio parahaemolyticus. Journal of Food Protection,70(7), 1656–1662.Google Scholar
  47. Latouche, K., Rainelli, P., & Vermersch, D. (1998). Food safety issues and the BSE scare: Some lessons from the French case. Food Policy,23(5), 347–356.CrossRefGoogle Scholar
  48. Madec, F., Geers, R., Vesseur, P., Kjeldsen, N., & Blaha, T. (2001). Traceability in the pig production chain. OIE Revue Scientifique et Technique,20(2), 523–537.Google Scholar
  49. Maldini, M., Nonnis Marzano, F., Fortes, G. G., Papa, R., & Gandolfi, G. (2006). Fish and seafood traceability based on AFLP markers: Elaboration of a species database. Aquaculture,261(2), 487–494.CrossRefGoogle Scholar
  50. Manel, S., Gaggiotti, O. E., & Waples, R. S. (2005). Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution,20(3), 136–142.CrossRefGoogle Scholar
  51. Marshall, T. C., Slate, J., Kruuk, L. E. B., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639–655.CrossRefGoogle Scholar
  52. Matsunaga, T., Chikuni, K., Tanabe, R., Muroya, S., Nakai, H., Shibata, K., et al. (1998). Determination of mitochondrial cytochrome B gene sequence for red deer (Cervus Elaphus) and the differentiation of closely related deer meats. Meat Science,49(4), 379–385.CrossRefGoogle Scholar
  53. Matsunaga, T., Chikuni, K., Tanabe, R., Muroya, S., Shibata, K., Yamada, J., & Shinmura, Y. (1999). A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science,51(2), 143–148.CrossRefGoogle Scholar
  54. Maudet, C., & Taberlet, P. (2002). Holstein’s milk detection in cheeses inferred from melanocortin receptor 1 (MC1R) gene polymorphism. Journal of Dairy Science, 85(4), 707–715.Google Scholar
  55. McKean, J. D. (2001). The importance of traceability for public health and consumer protection. OIE Revue Scientifique et Technique,20(2), 363–371.Google Scholar
  56. Meghen, C. N., Scott, C. S., Bradley, D. G., MacHugh, D. E., Loftus, R. T., & Cunningham, E. P. (1998). DNA based traceability techniques for the beef industry. Animal Genetics, 29S1, 48–49.Google Scholar
  57. Miraglia, M., Berdal, K. G., Brera, C., Corbisier, P., Holst-Jensen, A., Kok, E. J., et al. (2004). Detection and traceability of genetically modified organisms in the food production chain. Food and Chemical Toxicology,42(7), 1157–1180.CrossRefGoogle Scholar
  58. O’Hanlon, K. A., Catarame, T. M. G., Blair, I. S., McDowell, D. A., & Duffy, G. (2005). Comparison of a real-time PCR and an IMS/culture method to detect Escherichia coli O26 and O111 in minced beef in the Republic of Ireland. Food Microbiology,22(6), 553–560.CrossRefGoogle Scholar
  59. Orrú, L., Napolitano, F., Catillo, G., & Moioli, B. (2006). Meat molecular traceability: How to choose the best set of microsatellites? Meat Science,72(2), 312–317.CrossRefGoogle Scholar
  60. Ozawa, T., Lopez-Villalobos, N., & Blair, H. T. (2005). An update on beef traceability regulations in Japan. Proceedings of the New Zealand Society of Animal Production, 65, 80–84.Google Scholar
  61. Paetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology,13(1), 55–65.CrossRefGoogle Scholar
  62. Pancaldi, M., Carboni, E., Paganelli, A., Righini, G., Salvi, A., Fontanesi, L., et al. (2006). Use of a natural tracer combined with the analysis of its DNA to guarantee the authenticity of agro-food products: The Authentifood system applied to typical dry-cured hams. Industrie Alimentari,45(463), 1147–1155.Google Scholar
  63. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.Google Scholar
  64. Regulation (EC) No 1760/2000 of the European Parliament and of the Council of July 17, 2000 establishing a system for the identification and registration of bovine animals regarding the labelling of beef products and repealing Council Regulation (EC), No. 820/97.Google Scholar
  65. Rudenko, L., & Matheson, J. C. (2007). The US FDA and animal cloning: Risk and regulatory approach. Theriogenology,67(1), 198–206.CrossRefGoogle Scholar
  66. Saez, R., Sanz, Y., & Toldrá, F. (2004). PCR-based fingerprinting techniques for rapid detection of animal species in meat products. Meat Science,66(3), 659–665.CrossRefGoogle Scholar
  67. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a Laboratory Manual (2nd ed.). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.Google Scholar
  68. Sancristobal, M., & Chevalet, C. (1997). Error tolerant parent identification from a finite set of individuals. Genetical Research,70(1), 53–62.CrossRefGoogle Scholar
  69. Schroeder, C. M., White, D. G., Ge, B., Zhang, Y., McDermott, P. F., Ayers, S., Zhao, S., & Meng, J. (2003). Isolation of antimicrobial-resistant Escherichia coli from retail meats purchased in Greater Washington, DC, USA. International Journal of Food Microbiology, 85(1–2),197–202.CrossRefGoogle Scholar
  70. Shackell, G. H. (2005). Traceability systems in the meat industry. Proceedings of the New Zealand Society of Animal Production, 65, 97–101.Google Scholar
  71. Shackell, G. H., Mathias, H. C., Cave, V. M., & Dodds, K. G. (2005). Evaluation of microsatellites as a potential tool for product tracing of ground beef mixtures. Meat Science, 70(2),337–345.CrossRefGoogle Scholar
  72. Shackell, G. H., Tate, M. L., & Anderson, R. M. (2001). Installing a DNA-based traceability system in the meat industry. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 14, 533–536.Google Scholar
  73. Smith, P. G., Cousens, S. N., Huillard D’Aignaux, J. N., Ward, H. J. T., & Will, R. G. (2004). The Epidemiology of Variant Creutzfeldt-Jakob Disease. Current Topics in Microbiology and Immunology, 284, 161–191.Google Scholar
  74. Taberlet, P., & Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society, 68, 41–55.CrossRefGoogle Scholar
  75. Tate, M. L. (2001). Traceability of meat products – application of DNA technology. Proceedings of the New Zealand Grasslands Association, 63, 255–257.Google Scholar
  76. Thomas, S. C., & Hill, W. G. (2002). Sibship reconstruction in hierarchical population structures using Markov chain Monte Carlo techniques. Genetical Research,79(03), 227–234.CrossRefGoogle Scholar
  77. Tomlinson, J. J., Elliott-Smith, W., & Radosta, T. (2006). Laboratory information management system chain of custody: Reliability and security. Journal of Automated Methods and Management in Chemistry, Article id 74907 4 pages doi: 10.1155 JAMMC/2006/74907.Google Scholar
  78. Van De Casteele, T., Galbusera, P., & Matthysen, E. (2001). A comparison of microsatellite-based pairwise relatedness estimators. Molecular Ecology,10(6), 1539–1549.Google Scholar
  79. Vázquez, J. F., Pérez, T., Ureña, F., Gudín, E., Albornoz, J., & Domínguez, A. (2004). Practical Application of DNA Fingerprinting To Trace Beef. Journal of Food Protection, 67, 972–979.Google Scholar
  80. Verbeke, W. (2001). Beliefs, attitude and behaviour towards fresh meat revisited after the Belgian dioxin crisis. Food Quality and Preference,12(8), 489–498.CrossRefGoogle Scholar
  81. Verbeke, W., Frewer, L. J., Scholderer, J., & De Brabander, H. F. (2007). Why consumers behave as they do with respect to food safety and risk information. Analytica Chimica Acta,586(1–2 SPEC. ISS.), 2–7.CrossRefGoogle Scholar
  82. Vignal, A., Milan, D., SanCristobal, M., & Eggen, A. (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution,34(3), 275–305.CrossRefGoogle Scholar
  83. Villani, F., Russo, F., Blaiotta, G., Moschetti, G., & Ercolini, D. (2005). Presence and characterisation of verotoxin producing E. coli in fresh Italian pork sausages, and preparation and use of an antibiotic-resistant strain for challenge studies. Meat Science,70(1), 181–188.CrossRefGoogle Scholar
  84. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research,23(21), 4407–4414.CrossRefGoogle Scholar
  85. Weir, B. S., Anderson, A. D., & Hepler, A. B. (2006). Genetic relatedness analysis: modern data and new challenges. Nature Reviews Genetics,7(10), 771–780.CrossRefGoogle Scholar
  86. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18(22), 6531–6535.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G.H. Shackell
    • 1
  • K.G. Dodds
  1. 1.AgResearch InvermayNew Zealand

Personalised recommendations