Skip to main content

Network Scheduling and Message-passing

  • Chapter
Performance Modeling and Engineering

Algorithms are operational building-blocks of a network. An important class of network algorithms deal with the scheduling of common resources among various entities such as packets or flows. In a generic setup, such algorithms operate under stringent hardware, time, power or energy constraints. Therefore, algorithms have to be extremely simple, lightweight in data-structure and distributed. Therefore, a network algorithm designer is usually faced with the task of resolving an acute tension between performance and implementability of the algorithm. In this chapter, we survey recent results on novel design and analysis methods for simple, distributed aka message-passing scheduling algorithms. We describe how the asymptotic analysis methods like fluid model and heavy traffic naturally come together with algorithm design methods such as randomization and belief-propagation (message-passing heuristic) in the context of network scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, M. and Kumaran, M. and Ramanan, K. and Stolyar, A. and Vijayakumar, R. and Whiting, P.:Scheduling in a queueing system with asynchronously varying service rates. Probability in the Engineering and Informational Sciences, Vol. 18 (2):191–217, (2004).

    MATH  MathSciNet  Google Scholar 

  2. Bambos, N. and Walrand, J.:Scheduling and stability aspects of a general class of parallel processing systems. Advances in Applied Probability, Vol. 25(1):176–202, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bayati, M. and Shah, D. and Sharma, M.:Max-product for maximum weight matching:convergence, correctness and LP duality. IEEE Information Theory Transactions, Vol. 54 (3):1241–1251, (2008). Preliminary versions appeareared in IEEE ISIT, (2005) and (2006).

    Article  MathSciNet  Google Scholar 

  4. Bayati, M. and Prabhakar, B. and Shah, D. and Sharma, M.:Iterative scheduling algorithms. IEEE Infocom, (2007).

    Google Scholar 

  5. Betsekas, D.:The auction algorithm:a distributed relaxation method for the assignment problem. Annals of operations research, Vol. 14:105–123., (1988).

    Article  MathSciNet  Google Scholar 

  6. Boyd, S. and Ghosh, A. and Prabhakar, B. and Shah, D.:Gossip algorithms:design, analysis and application. In proceedings of IEEE Infocom, (2005).

    Google Scholar 

  7. Bramson, M.:State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Systems 30 89–148, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. Dai, J. G. “Jim”:Stability of fluid and stochastic processing networks. MaPhySto Lecture Notes, (1999). http://www.maphysto.dk/cgi-bin/gp.cgi?publ=70

  9. Dai, J. and Prabhakar, B.:The throughput of switches with and without speed-up. In proceedings of IEEE Infocom, (2000).

    Google Scholar 

  10. Dembo, A. and Zeitouni, O.:Large Deviations Techniques and Applications, 2nd edition, Springer, (1998).

    Google Scholar 

  11. Eryilmaz, A. and Srikant, R. and Perkins, J. R.:Stable scheduling policies for fading wireless channels. IEEE/ACM Trans. Networking, Vol. 13(2):411–424, (2005).

    Article  Google Scholar 

  12. Giaccone, P. and Prabhakar, B and Shah, D.:Randomized scheduling algorithms for high-aggregate bandwidth switches. IEEE J. Sel. Areas Commun., 21(4), 546–559, (2003).

    Article  Google Scholar 

  13. Jung, K. and Shah, D.:Low Delay Scheduling in Wireless Network. In Proceedings of IEEE ISIT, (2007).

    Google Scholar 

  14. Keslassy, I. and McKeown, N.:Analysis of Scheduling Algorithms That Provide 100% Throughput in Input-Queued Switches. In proceedings of Allerton Conference on Communication, Control and Computing, (2001).

    Google Scholar 

  15. McKeown, N.:The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Transactions on Networking, 7(2), 188–201, (1999).

    Article  Google Scholar 

  16. McKeown, N. and Anantharam, V. and Walrand, J.:Achieving 100% throughput in an input-queued switch. In Proceedings of IEEE Infocom, 296–302 (1996).

    Google Scholar 

  17. Meyn, S. P. and Tweedie, R. L.:Markov Chains and Stochastic Stability. Springer-Verlag, London, (1993). http://probability.ca/MT/

    MATH  Google Scholar 

  18. Modiano, E. and Shah, D. Zussman, G.:Maximizing Throughput in Wireless Network via Gossiping. In Proceedings of ACM SIGMETRIC/Performance, (2006).

    Google Scholar 

  19. Mosk-Aoyama, D. and Shah, D. Computing separable functions via gossip. In Proceedings of ACM PODC, (2006). Longer version to appear in IEEE Transaction on Information Theory, (2008).

    Google Scholar 

  20. Tassiulas, L. and Ephremides, A.:Dynamic server allocation to parallel queues with randomly varying connectivity. IEEE Transactions on Information Theory, Vol. 39(2), 466–478, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  21. Sanghavi, S. and Shah, D. and Willsky, A.:Message-passing for Maximum Weight Independent Set. Submitted. In Proceedings of NIPS, (2007).

    Google Scholar 

  22. Shah, D.:Stable algorithms for Input Queued Switches. In Proceedings of Allerton Conference on Communication, Control and Computing, (2001).

    Google Scholar 

  23. Shah, D. and Kopikare, M.:Delay bounds for the approximate Maximum Weight matching algorithm for input queued switches. In Proceedings of IEEE Infocom, (2002).

    Google Scholar 

  24. Shah, D. and Tse, D. and Tsitsiklis, J. N.:On hardness of low delay scheduling. Pre-print, (2008).

    Google Scholar 

  25. Shah, D. and Wischik, D. J.: Optimal scheduling algorithms for input-queued switches. In Proceedings of IEEE Infocom, (2006).

    Google Scholar 

  26. Shah, D. and Wischik, D. J.: Heavy traffic analysis of optimal scheduling algorithms for switches networks. Submitted. Preliminary version appeared in proceedings of IEEE Infocom, (2006). http://www.cs.ucl.ac.uk/staff/D.Wischik/Research/netsched.html

  27. Shakkottai, S. and Srikant, R. and Stolyar, A. L.:Pathwise Optimality of the Exponential Scheduling Rule for Wireless Channels. Advances in Applied Probability, Vol. 36(4), 1021–1045, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  28. Stolyar, A. L.:On the stability of multiclass queueing networks:A relaxed sufficient condition via limiting fluid processes. Markov Processes and Related Fields, 491–512, (1995).http://cm.bell-labs.com/who/stolyar/stabil mprf.pdf

  29. Stolyar, A. L.:Maxweight scheduling in a generalized switch:State space collapse and work-load minimization in heavy traffic. Annals of Applied Probability, Vol. 14(1), 1–53, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  30. Tassiulas, L.:Linear complexity algorithms for maximum throughput in radio networks and input queued switches. In Proceedings of IEEE INFOCOM'98, (1998).

    Google Scholar 

  31. Tassiulas, L. and Ephremides, A.:Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37, 1936-1948 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  32. Tsitsiklis, J. N.:Problems in decentralized decision making and computation. Ph.D. Thesis, Department of EECS, MIT, (1984).

    Google Scholar 

  33. Williams, R.:iffusion approximations for open multiclass queueing networks:sufficient conditions involving state space collapse. Queueing Systems 30 27–88, (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shah, D. (2008). Network Scheduling and Message-passing. In: Liu, Z., Xia, C.H. (eds) Performance Modeling and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79361-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79361-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79360-3

  • Online ISBN: 978-0-387-79361-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics