Skip to main content

Extraction of Three-dimensional Information from Reconstructions of In-Line Digital Holograms

  • Chapter
  • First Online:
  • 1172 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Gabor, “A new microscope principle,” Nature 161, 77–79 (1948).

    Article  ADS  Google Scholar 

  2. E. N. Leith and J. Upatnieks, “New techniques in wavefront reconstruction,” Journal of the Optical Society of America A 51, 1469–1473 (1962).

    Google Scholar 

  3. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” Journal of the Optical Society of America 53, 1377–1381 (1963).

    Article  ADS  Google Scholar 

  4. O. Bryngdahl and A. Lohmann, “Interferograms are image holograms,” Journal of the Optical Society of America 58, 141–142 (1968).

    Article  Google Scholar 

  5. P. Hariharan, Basics of holography, Cambridge University Press, Cambridge (2002).

    Book  Google Scholar 

  6. J. W. Goodman and R. W. Lawerence, “Digital image formation from electronically detected holograms,” Applied Physics Letters 11, 777–778 (1967).

    Article  Google Scholar 

  7. T. Kreis, M. Adams, and W. Jüptne, “Methods of digital holography: a comparison,” Proc. SPIE Optical Inspection and Micromeasurements II 3098, 224–233 (1999).

    ADS  Google Scholar 

  8. L. Onural and P. Scott, “Digital decoding of in-line holograms,” Optical Engineering. 26, 1124–1132 (1987).

    ADS  Google Scholar 

  9. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Applied Optics 33, 179–181 (1994).

    Article  ADS  Google Scholar 

  10. T. Kreis, Handbook of holographic interferometry, WILEY-VCH GmbH and Co. KGaA, Weinheim, first ed. (2005).

    Google Scholar 

  11. U. Schnars and W. Jüptner, Digital holography: digital hologram recording, numerical reconstruction, and related techniques, Springer, Berlin (2004).

    Google Scholar 

  12. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Optics Letters 25, 610–612 (2000).

    Article  ADS  Google Scholar 

  13. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Applied Optics 41, 4124–4132 (2002).

    Article  ADS  Google Scholar 

  14. J. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms,” Applied Optics 45, 2975–2985 (2006).

    Article  ADS  Google Scholar 

  15. A. Stern and B. Javidi, “Sampling in the light of wigner distribution,” Journal of the Optical Society of America A 21, 360–366 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Optics Communications 164, 257–268 (1999).

    Article  ADS  Google Scholar 

  17. S. Schedin, G. Pedrini, H. Tiziani, A. Aggarwal, and M. Gusev, “Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation,” Applied Optics 40, 100–117 (2001).

    Article  ADS  Google Scholar 

  18. T. Kreis, M. Adams, and W. Jüptner, “Digital in-line holography in particle measurement,” Proc. SPIE 3744 (1999).

    Google Scholar 

  19. N. Y. S. Murata, “Potential of digital holography in particle measurement,” Optics and Laser Technology 32, 567–574 (2000).

    Article  ADS  Google Scholar 

  20. T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Optical Engineering 36, 2357–2360 (1997).

    Article  ADS  Google Scholar 

  21. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Optics Letters 22, 1268–1270 (1997).

    Article  ADS  Google Scholar 

  22. J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recognition Letters 9, 19–25 (1989).

    Article  Google Scholar 

  23. M. Liebling and M. Unser, “Autofocus for digital fresnel holograms by use of a fresnelet-sparsity criterion,” Journal of the Optical Society of America A 21, 2424–2430 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Dubois, C.Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy,” Optics Express 14, 5895–5908 (2006).

    Article  ADS  Google Scholar 

  25. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Applied Optics 47, D71–D79 (2008).

    Google Scholar 

  26. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of three-dimensional objects encoded in single perspectives of digital holograms,” Optics Letters 32, 1229–1231 (2007).

    Article  ADS  Google Scholar 

  27. C. P. McElhinney, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, “Multiple object segmentation in macroscopic three-dimensional scenes from a single perspective using digital holography,” in preparation (2007).

    Google Scholar 

  28. T. M. Lehtimäki and T. J. Naughton, “Stereoscopic viewing of digital holograms of real-world objects,” in 3DTV Conference 2007 – Capture, Transmission and Display of 3D Video, IEEE Press, New York, (Kos, Greece) (2007). article no. 39.

    Google Scholar 

  29. H. J. Caulfield, Handbook of optical holography, Academic Press, New York (1979).

    Google Scholar 

  30. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” Journal of the Optical Society of America 54, 1295 (1964).

    Article  ADS  Google Scholar 

  31. J. Goodman, Introduction to Fourier optics, Roberts and Company, Englewood, Colorado, 3rd ed. (2005).

    Google Scholar 

  32. D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Optics Express 12, 5539–5548 (2004).

    Article  ADS  Google Scholar 

  33. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Applied Optics 39, 4070–4075 (2000).

    Article  ADS  Google Scholar 

  34. Y. Zhang, W. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Optics Communications 240, 261–267 (2004).

    Article  ADS  Google Scholar 

  35. T. Poon, T. Kim, G. Indebetouw, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Optics Letters 25, 215–217 (2000).

    Article  ADS  Google Scholar 

  36. S. Lai, B. Kemper, and G. vonBally, “Off-axis reconstruction of in-line holograms for twin-image elimination,” Optics Communications 169, 37–43 (1999).

    Article  ADS  Google Scholar 

  37. L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Optical Engineering 39, 3214–3219 (2000).

    Article  ADS  Google Scholar 

  38. R. Bracewell, The fourier transform and its applications, McGraw-Hill (1986).

    Google Scholar 

  39. Y. Frauel, E. Tajahuerce, M. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Applied Optics 40, 3887–3893 (2001).

    Article  ADS  Google Scholar 

  40. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Applied Optics 13, 2693–2703 (1974).

    Article  ADS  Google Scholar 

  41. I. R. Nourbaksh, D. Andre, C. Tomasi, and M. R. Genesereth, “Mobile robot obstacle avoidance via depth from focus,” Robotsics and Autonomous Systems 22, 151–158 (1997).

    Article  Google Scholar 

  42. V. Murino and C. S. Regazzoni, “Visual surveillance by depth from focus,” IEEE International Conference on Industrial Electronics, Control and Instrumentation 2, 998–1002 (1994).

    Google Scholar 

  43. F. Chen, G. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Optical Engineering 39, 10–22 (2000).

    Article  ADS  Google Scholar 

  44. W. Huang and X. Jing, “Evaluation of focus measures in multi-focus image fusion,” Pattern Recognition Letters 28, 493–500 (2007).

    Article  Google Scholar 

  45. A. Erteza, “Sharpness index and its application to focus control,” Applied Optics 15, 877–881 (1976).

    Article  ADS  Google Scholar 

  46. M. Subbarao and T. Choi, “Focusing techniques,” Optical Engineering 32, 2824–2836 (1993).

    Article  ADS  Google Scholar 

  47. K. Takahashi, A. Kubota, and T. Naemura, “A focus measure for light field rendering,” IEEE International Conference on Image Processing 4, 2475–2478 (2004).

    Google Scholar 

  48. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” Journal of the Optical Society of America A 64, 1200–1210 (1974).

    Article  Google Scholar 

  49. J. Kautsky, J. Flusser, B. Zitová, and S. Šimberová, “A new wavelet-based measure of image focus,” Pattern Recognition Letters 27, 1431–1439 (2006).

    Article  Google Scholar 

  50. V. H. Bove. Jr, “Entropy-based depth from focus,” Journal of the Optical Society of America A 10, 561–566 (1993).

    Article  ADS  Google Scholar 

  51. M. Subbarao and J. Tyan, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 864–870 (1998).

    Article  Google Scholar 

  52. P. Ferraro, G. Coppola, S. Nicola, A. Finizio, and G. Peirattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Optics Letters 28, 1257–1259 (2003).

    Article  ADS  Google Scholar 

  53. P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Optics Express 13, 6738–6749 (2005).

    Article  ADS  Google Scholar 

  54. R. Yin, P. Flynn, and S. Broschat, “Position-dependent defocus processing for acoustic holography images,” International Journal of Imaging Systems and Technology 12, 101–111 (2002).

    Article  Google Scholar 

  55. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” Journal of Optics A: Pure Applied Optics 6, 396–400 (2004).

    Article  Google Scholar 

  56. J. A. E. Malkiel and J. Katz, “Automated scanning and measurement of particle distributions within a holographic reconstructed volume,” Measurement Science and Technology 15, 601–612 (2004).

    Article  ADS  Google Scholar 

  57. A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” Journal of the Optical Society of America A 22, 1176–1180 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  58. N. Burns and J. Watson, “Data extraction from underwater holograms of marine organisms,” Proceedings of Oceans 07, Aberdeen (2007).

    Google Scholar 

  59. T. Colomb, E. Cuche, P. Dahlgen, A. Marian, F. Montfort, C. Depeursinge, P. Marquet, and P. Magistretti, “3D imaging of surfaces and cells by numerical reconstruction of wavefronts in digital holography applied to transmission and reflection microscopy,” Proceedings of IEEE – International Symposium on Biomedical Imaging , 773–776 (2002).

    Google Scholar 

  60. J. Maycock, B. M. Hennelly, J. B. McDonald, T. J. Naughton, Y. Frauel, A. Castro, and B. Javidi, “Reduction of speckle in digital holography by discrete fourier filtering,” Journal of the Optical Society of America A 24, 1617–1622 (2007).

    Article  ADS  Google Scholar 

  61. B. M. Hennelly, T. J. Naughton, J. B. McDonald, Y. Frauel, and B. Javidi, “A method for superresolution in digital holography,” Proceedings of SPIE Optics and Photonics, San Diego 6311, 63110 J (2006).

    Google Scholar 

  62. D. Forsyth and J. Ponce, Computer vision: a modern approach, Prentice Hall (2003).

    Google Scholar 

  63. M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” SIGGRAPH Computer Graphics 31, 63–67 (1997).

    Article  Google Scholar 

  64. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer Magazine 38, 46–53 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

This chapter has emanated from research conducted with the financial support of Science Foundation Ireland, Enterprise Ireland, the Embark Initiative of the Irish Research Council for Science, Engineering, and Technology under the National Development Plan, and the European Commission Framework Programme 6 through a Marie Curie Fellowship. The authors would also like to thank Jonathan Maycock and Lukas Ahrenberg for their help and contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor P. McElhinney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McElhinney, C.P., Hennelly, B.M., Javidi, B., Naughton, T.J. (2009). Extraction of Three-dimensional Information from Reconstructions of In-Line Digital Holograms. In: Javidi, B., Okano, F., Son, JY. (eds) Three-dimensional Imaging, Visualization, and Display. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79335-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79335-1_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79334-4

  • Online ISBN: 978-0-387-79335-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics