Seizure-Induced Neuronal Plasticity and Metabolic Effects

  • Monisha Goyal


Epilepsy, the most common acquired chronic neurological disease, occurs in 1% of the human population. Despite treatment with the newest antiepileptic medications, almost one-third of the individuals continue having seizures (Kwan and Brodie, 2000). Many of those with seizure persistence and even some with seizure ­remittance suffer often from under-appreciated co-morbidities including cognitive deficits and psychopathology such as anxiety, depression, and poor attention. Our understanding of epileptogenesis and its concurrent effects is based mainly on animal models. Using humans with epilepsy to study effects of human epilepsy is fraught with multiple problems including ethics, medication effects, and reproducibility. More recently, however, human brain tissue from surgical ­resections has been studied (this represents only a small subgroup of patients with epilepsy). Modern imaging techniques have also helped unveil widespread metabolic ­abnormalities associated with epilepsy.


Fractional Anisotropy Diffusion Tensor Image Status Epilepticus Neuronal Loss Dendritic Spine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, B., Von Ling, E., Vaccarella, L., Ivy, G.O., Fahnestock, M., and Racine, R.J. 1998. Timecourse for kindling-induced changes in the hilar area of the dentate gyrus: reactive gliosis as apotential mechanism. Brain Res 804(2):331–336PubMedCrossRefGoogle Scholar
  2. Andrew, R.D., Fagan, M., Ballyk, B.A., and Rosen, A.S. 1989. Seizure susceptibility and theosmotic state. Brain Res 498(1):175–180PubMedCrossRefGoogle Scholar
  3. Babb, T.L., and Brown, W.J. 1986. Neuronal, dendritic, and vascular profiles of human temporallobe epilepsy correlated with cellular physiology in vivo. Adv Neurol 44:949–966PubMedGoogle Scholar
  4. Bahar, S., Suh, M., Zhao, M., and Schwartz, T.H. 2006. Intrinsic optical signal imaging ofneocortical seizures: the ­ epileptic dip ’. Neuroreport 17(5):499–503PubMedCrossRefGoogle Scholar
  5. Bailet, L.L., and Turk, W.R. 2000. The impact of childhood epilepsy on neurocognitive and behavioralperformance: a prospective longitudinal study. Epilepsia 41(4):426–431PubMedCrossRefGoogle Scholar
  6. Barbarosie, M., and Avoli, M. 1997. CA3-driven hippocampal-entorhinal loop controls rather thansustains in vitro limbic seizures. J Neurosci 17(23):9308–9314PubMedGoogle Scholar
  7. Beck, H., Steffens, R., Heinemann, U., and Elger, C.E. 1997. Properties of voltage-activated Ca2+currents in acutely isolated human hippocampal granule cells. J Neurophysiol 77(3):1526–1537PubMedGoogle Scholar
  8. Benar, C.G., Gross, D.W., Wang, Y., Petre, V., Pike, B., Dubeau, F., and Gotman, J. 2002. TheBOLD response to interictal epileptiform discharges. Neuroimage 17(3):1182–1192PubMedCrossRefGoogle Scholar
  9. Ben-Ari, Y. 2001. Cell death and synaptic reorganizations produced by seizures. Epilepsia 42(Suppl 3):5–7PubMedCrossRefGoogle Scholar
  10. Benedek, K., Juhasz, C., Muzik, O., Chugani, D.C., and Chugani, H.T. 2004. Metabolic changesof subcortical structures in intractable focal epilepsy. Epilepsia 45(9):1100–1105PubMedCrossRefGoogle Scholar
  11. Bernardi, P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeabilitytransition. Physiol Rev 79(4):1127–1155PubMedGoogle Scholar
  12. Bianchi, L., De Micheli, E., Bricolo, A., Ballini, C., Fattori, M., Venturi, C., Pedata, F., Tipton, K.F.,and Della Corte, L. 2004. Extracellular levels of amino acids and choline in human high gradegliomas: an intraoperative microdialysis study. Neurochem Res 29(1):325–334PubMedCrossRefGoogle Scholar
  13. Binder, D.K., and Steinhauser, C. 2006. Functional changes in astroglial cells in epilepsy. Glia 54(5):358–368PubMedCrossRefGoogle Scholar
  14. Binnie, C.D., and Marston, D. 1992. Cognitive correlates of interictal discharges. Epilepsia 33(Suppl 6):S11–S17PubMedGoogle Scholar
  15. Bjornaes, H., Stabell, K., Henriksen, O., and Loyning, Y. 2001. The effects of refractory epilepsyon intellectual functioning in children and adults. A longitudinal study. Seizure 10(4):250–259CrossRefGoogle Scholar
  16. Bordey, A., and Sontheimer, H. 1998. Electrophysiological properties of human astrocytic tumorcells in situ: enigma of spiking glial cells. J Neurophysiol 79(5):2782–2793PubMedGoogle Scholar
  17. Briellmann, R.S., Wellard, R.M., and Jackson, G.D. 2005. Seizure-associated abnormalities inepilepsy: evidence from MR imaging. Epilepsia 46(5):760–766PubMedCrossRefGoogle Scholar
  18. Brooks-Kayal, A.R. 2005. Rearranging receptors. Epilepsia 46(Suppl 7):29–38PubMedCrossRefGoogle Scholar
  19. Castillo, M., Smith, J.K., and Kwock, L. 2001. Proton MR spectroscopy in patients with acutetemporal lobe seizures. AJNR Am J Neuroradiol 22(1):152–157PubMedGoogle Scholar
  20. Cavazos, J.E., and Sutula, T.P. 1990. Progressive neuronal loss induced by kindling: a possiblemechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527(1):1–6PubMedCrossRefGoogle Scholar
  21. Cavazos, J.E., Golarai, G., and Sutula, T.P. 1991. Mossy fiber synaptic reorganization induced by kindling:time course of development, progression, and permanence. J Neurosci 11(9):2795–2803PubMedGoogle Scholar
  22. Cavazos, J.E., Das, I., and Sutula, T.P. 1994. Neuronal loss induced in limbic pathways by kindling:evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci1 4(5 Pt 2):3106–3121Google Scholar
  23. Cendes, F., Andermann, F., Dubeau, F., Matthews, P.M., and Arnold, D.L. 1997. Normalization ofneuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from protonMR spectroscopic imaging. Neurology 49(6):1525–1533PubMedCrossRefGoogle Scholar
  24. Chuang, Y.C., Chang, A.Y., Lin, J.W., Hsu, S.P., and Chan, S.H. 2004. Mitochondrial dysfunctionand ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus inthe rat. Epilepsia 45(10):1202–1209PubMedCrossRefGoogle Scholar
  25. Cock, H.R., Tong, X., Hargreaves, I.P., Heales, S.J., Clark, J.B., Patsalos, P.N., Thom, M., Groves, M.,Schapira, A.H., Shorvon, S.D., and Walker, M.C. 2002. Mitochondrial dysfunction associatedwith neuronal death following status epilepticus in rat. Epilepsy Res 48(3):157–168PubMedCrossRefGoogle Scholar
  26. Cortez, M.A., Perez Velazquez, J.L., and Snead, O.C., III 2006. Animal models of epilepsy andprogressive effects of seizures. Adv Neurol 97:293–304PubMedGoogle Scholar
  27. Cossart, R., Bernard, C., and Ben-Ari, Y. 2005. Multiple facets of GABAergic neurons and synapses:multiple fates of GABA signalling in epilepsies. Trends Neurosci 28(2):108–115PubMedCrossRefGoogle Scholar
  28. Coulter, D.A. 1999. Chronic epileptogenic cellular alterations in the limbic system after statusepilepticus. Epilepsia 40(Suppl 1):S23–S33; discussion S40-S21PubMedCrossRefGoogle Scholar
  29. D’Ambrosio, R., Maris, D.O., Grady, M.S., Winn, H.R., and Janigro, D. 1999. Impaired K(+)homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. JNeurosci 19(18):8152–8162Google Scholar
  30. DeGiorgio, C.M., Correale, J.D., Gott, P.S., Ginsburg, D.L., Bracht, K.A., Smith, T., Boutros, R.,Loskota, W.J., and Rabinowicz, A.L. 1995. Serum neuron-specific enolase in human statusepilepticus. Neurology 45(6):1134–1137PubMedCrossRefGoogle Scholar
  31. Dennis, E.A. 1994. Diversity of group types, regulation, and function of phospholipase A2. J BiolChem 269(18):13057–13060Google Scholar
  32. Diehl, B., Symms, M.R., Boulby, P.A., Salmenpera, T., Wheeler-Kingshott, C.A., Barker, G.J.,and Duncan, J.S. 2005. Postictal diffusion tensor imaging. Epilepsy Res 65(3):137–146PubMedCrossRefGoogle Scholar
  33. Dreifuss, S., Vingerhoets, F.J., Lazeyras, F., Andino, S.G., Spinelli, L., Delavelle, J., and Seeck, M. 2001. Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology 57(9):1636–1641PubMedCrossRefGoogle Scholar
  34. During, M.J., and Spencer, D.D. 1993. Extracellular hippocampal glutamate and spontaneous seizurein the conscious human brain. Lancet 341(8861):1607–1610PubMedCrossRefGoogle Scholar
  35. During, M.J., Fried, I., Leone, P., Katz, A., and Spencer, D.D. 1994. Direct measurement of extracellularlactate in the human hippocampus during spontaneous seizures. J Neurochem 62(6):2356–2361PubMedCrossRefGoogle Scholar
  36. Ebert, U., Brandt, C., and Loscher, W. 2002. Delayed sclerosis, neuroprotection, and limbic epileptogenesisafter status epilepticus in the rat. Epilepsia 43(Suppl 5):86–95PubMedCrossRefGoogle Scholar
  37. Eid, T., Thomas, M.J., Spencer, D.D., Runden-Pran, E., Lai, J.C., Malthankar, G.V., Kim, J.H.,Danbolt, N.C., Ottersen, O.P., and de Lanerolle, N.C. 2004. Loss of glutamine synthetase inthe human epileptogenic hippocampus: possible mechanism for raised extracellular glutamatein mesial temporal lobe epilepsy. Lancet 363(9402):28–37PubMedCrossRefGoogle Scholar
  38. Eid, T., Lee, T.S., Thomas, M.J., Amiry-Moghaddam, M., Bjornsen, L.P., Spencer, D.D., Agre, P.,Ottersen, O.P., and de Lanerolle, N.C. 2005. Loss of perivascular aquaporin 4 may underliedeficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl AcadSci USA 102(4):1193–1198CrossRefGoogle Scholar
  39. Emerich, D.F. 1999. Intracellular events associated with cerebral ischemia. In: L.P. Miller (Ed.),Stroke therapy: basic, preclinical, and clinical directions. Wiley-Liss, New York, pp.195–218Google Scholar
  40. Engel, J., Jr., Henry, T.R., and Swartz, B.E. 1995. Positron emission tomography in frontal lobeepilepsy. Adv Neurol 66:223–238; discussion 238–241PubMedGoogle Scholar
  41. Esclapez, M., Hirsch, J.C., Ben-Ari, Y., and Bernard, C. 1999. Newly formed excitatory pathwaysprovide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J CompNeurol 408(4):449–460Google Scholar
  42. Feng, Z., and Durand, D.M. 2006. Effects of potassium concentration on firing patterns of lowcalciumepileptiform activity in anesthetized rat hippocampus: inducing of persistent spikeactivity. Epilepsia 47(4):727–736PubMedCrossRefGoogle Scholar
  43. Fojtikova, D., Brazdil, M., Horky, J., Mikl, M., Kuba, R., Krupa, P., and Rektor, I. 2006. Magneticresonance spectroscopy of the thalamus in patients with typical absence epilepsy. Seizure 15(7):533–540PubMedCrossRefGoogle Scholar
  44. Frantseva, M.V., Perez Velazquez, J.L., and Carlen, P.L. 1998. Changes in membrane and synapticproperties of thalamocortical circuitry caused by hydrogen peroxide. J Neurophysio l80(3):1317–1326Google Scholar
  45. Frantseva, M.V., Perez Velazquez, J.L., Tsoraklidis, G., Mendonca, A.J., Adamchik, Y., Mills, L.R.,Carlen, P.L., and Burnham, M.W. 2000a. Oxidative stress is involved in seizure-inducedneurodegeneration in the kindling model of epilepsy. Neuroscience 97(3):431–435CrossRefGoogle Scholar
  46. Frantseva, M.V., Velazquez, J.L., Hwang, P.A., and Carlen, P.L. 2000b. Free radical productioncorrelates with cell death in an in vitro model of epilepsy. Eur J Neurosci 12(4):1431–1439CrossRefGoogle Scholar
  47. Gabriel, S., Njunting, M., Pomper, J.K., Merschhemke, M., Sanabria, E.R., Eilers, A., Kivi, A.,Zeller, M., Meencke, H.J., Cavalheiro, E.A., Heinemann, U., and Lehmann, T.N. 2004. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus frompatients with and without hippocampal sclerosis. J Neurosci 24(46):10416–10430PubMedCrossRefGoogle Scholar
  48. Gaillard, W.D., Bhatia, S., Bookheimer, S.Y., Fazilat, S., Sato, S., and Theodore, W.H. 1995. FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology 45(1):123–126PubMedCrossRefGoogle Scholar
  49. Gibbs, J.W., III, Shumate, M.D., and Coulter, D.A. 1997. Differential epilepsy-associated alterationsin postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. J Neurophysiol 77(4):1924–1938PubMedGoogle Scholar
  50. Glass, M., and Dragunow, M. 1995. Neurochemical and morphological changes associated withhuman epilepsy. Brain Res Brain Res Rev 21(1):29–41PubMedCrossRefGoogle Scholar
  51. Gorter, J.A., van Vliet, E.A., Aronica, E., and Lopes da Silva, F.H. 2001. Progression of spontaneousseizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral lossof hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 13(4):657–669PubMedCrossRefGoogle Scholar
  52. Gorter, J.A., Goncalves Pereira, P.M., van Vliet, E.A., Aronica, E., Lopes da Silva, F.H., and Lucassen, P.J. 2003. Neuronal cell death in a rat model for mesial temporal lobe epilepsy isinduced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 44(5):647–658PubMedCrossRefGoogle Scholar
  53. Grisar, T.M. 1986. Neuron-glia relationships in human and experimental epilepsy: a biochemicalpoint of view. Adv Neurol 44:1045–1073PubMedGoogle Scholar
  54. Hall, E.D., Kupina, N.C., and Althaus, J.S. 1999. Peroxynitrite scavengers for the acute treatmentof traumatic brain injury. Ann N Y Acad Sci 890:462–468PubMedCrossRefGoogle Scholar
  55. Handforth, A., and Ackermann, R.F. 1995. Mapping of limbic seizure progressions utilizing theelectrogenic status epilepticus model and the 14 C-2-deoxyglucose method. Brain Res BrainRes Rev 20(1):1–23CrossRefGoogle Scholar
  56. Hansen, A., Jorgensen, O.S., Bolwig, T.G., and Barry, D.I. 1990. Hippocampal kindling alters theconcentration of glial fibrillary acidic protein and other marker proteins in rat brain. Brain Res 531(1–2):307–311PubMedCrossRefGoogle Scholar
  57. Hinterkeuser, S., Schroder, W., Hager, G., Seifert, G., Blumcke, I., Elger, C.E., Schramm, J., andSteinhauser, C. 2000. Astrocytes in the hippocampus of patients with temporal lobe epilepsydisplay changes in potassium conductances. Eur J Neurosci 12(6):2087–2096PubMedCrossRefGoogle Scholar
  58. Holmes, G.L. 2004. Effects of early seizures on later behavior and epileptogenicity. Ment RetardDev Disabil Res Rev 10(2):101–105CrossRefGoogle Scholar
  59. Huang, L., Cilio, M.R., Silveira, D.C., McCabe, B.K., Sogawa, Y., Stafstrom, C.E., and Holmes, G.L. 1999. Long-term effects of neonatal seizures: a behavioral, electrophysiological, and histologicalstudy. Brain Res Dev Brain Res 118(1–2):99–107PubMedCrossRefGoogle Scholar
  60. Hughes, P.E., Alexi, T., Walton, M., Williams, C.E., Dragunow, M., Clark, R.G., and Gluckman, P.D. 1999. Activity and injury-dependent expression of inducible transcription factors, growthfactors and apoptosis-related genes within the central nervous system. Prog Neurobio l57(4):421–450CrossRefGoogle Scholar
  61. Isokawa, M. 1998. Remodeling dendritic spines in the rat pilocarpine model of temporal lobeepilepsy. Neurosci Lett 258(2):73–76PubMedCrossRefGoogle Scholar
  62. Jiang, M., Lee, C.L., Smith, K.L., and Swann, J.W. 1998. Spine loss and other persistent alterationsof hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J Neurosci 18(20):8356–8368PubMedGoogle Scholar
  63. Jiang, W., Duong, T.M., and de Lanerolle, N.C. 1999. The neuropathology of hyperthermic seizuresin the rat. Epilepsia 40(1):5–19PubMedCrossRefGoogle Scholar
  64. Khalilov, I., Dzhala, V., Medina, I., Leinekugel, X., Melyan, Z., Lamsa, K., Khazipov, R., andBen-Ari, Y. 1999. Maturation of kainate-induced epileptiform activities in interconnectedintact neonatal limbic structures in vitro. Eur J Neurosci 11(10):3468–3480PubMedCrossRefGoogle Scholar
  65. Khalilov, I., Holmes, G.L., and Ben-Ari, Y. 2003. In vitro formation of a secondary epileptogenicmirror focus by interhippocampal propagation of seizures. Nat Neurosci 6(10):1079–1085PubMedCrossRefGoogle Scholar
  66. Kimiwada, T., Juhasz, C., Makki, M., Muzik, O., Chugani, D.C., Asano, E., and Chugani, H.T. 2006. Hippocampal and thalamic diffusion abnormalities in children with temporal lobeepilepsy. Epilepsia 47(1):167–175PubMedCrossRefGoogle Scholar
  67. Kluck, R.M., Bossy-Wetzel, E., Green, D.R., and Newmeyer, D.D. 1997. The release of cytochromec from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136PubMedCrossRefGoogle Scholar
  68. Kohr, G., and Mody, I. 1994. Kindling increases N-methyl-D-aspartate potency at singleN-methyl-D-aspartate channels in dentate gyrus granule cells. Neuroscience 62(4):975–981PubMedCrossRefGoogle Scholar
  69. Kotloski, R., Lynch, M., Lauersdorf, S., and Sutula, T. 2002. Repeated brief seizures induce progressivehippocampal neuron loss and memory deficits. Prog Brain Res 135:95–110PubMedCrossRefGoogle Scholar
  70. Kraus, J.E., Yeh, G.C., Bonhaus, D.W., Nadler, J.V., and McNamara, J.O. 1994. Kindling inducesthe long-lasting expression of a novel population of NMDA receptors in hippocampal regionCA3. J Neurosci 14(7):4196–4205PubMedGoogle Scholar
  71. Kudin, A.P., Kudina, T.A., Seyfried, J., Vielhaber, S., Beck, H., Elger, C.E., and Kunz, W.S. 2002. Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15(7):1105–1114PubMedCrossRefGoogle Scholar
  72. Kunz, W.S., Kudin, A.P., Vielhaber, S., Blumcke, I., Zuschratter, W., Schramm, J., Beck, H., andElger, C.E. 2000. Mitochondrial complex I deficiency in the epileptic focus of patients withtemporal lobe epilepsy. Ann Neurol 48(5):766–773PubMedCrossRefGoogle Scholar
  73. Kwan, P., and Brodie, M.J. 2000. Early identification of refractory epilepsy. N Engl J Med 342(5):314–319PubMedCrossRefGoogle Scholar
  74. Lee, T.S., Eid, T., Mane, S., Kim, J.H., Spencer, D.D., Ottersen, O.P., and de Lanerolle, N.C. 2004. Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobeepilepsy. ActaNeuropathol (Berl) 108(6):493–502CrossRefGoogle Scholar
  75. Lemieux, L., Liu, R.S., and Duncan, J.S. 2000. Hippocampal and cerebellar volumetry in seriallyacquired MRI volume scans. Magn Reson Imaging 18(8):1027–1033PubMedCrossRefGoogle Scholar
  76. Lipton, S.A., Choi, Y.B., Sucher, N.J., Pan, Z.H., and Stamler, J.S. 1996. Redox state, NMDAreceptors and NO-related species. Trends Pharmacol Sci 17(5):186–187; discussion 187–189PubMedCrossRefGoogle Scholar
  77. Liu, R.S., Lemieux, L., Bell, G.S., Bartlett, P.A., Sander, J.W., Sisodiya, S.M., Shorvon, S.D., andDuncan, J.S. 2001. A longitudinal quantitative MRI study of community-based patients withchronic epilepsy and newly diagnosed seizures: methodology and preliminary findings. Neuroimage 14(1 Pt 1):231–243PubMedCrossRefGoogle Scholar
  78. Lombardo, A.J., Kuzniecky, R., Powers, R.E., and Brown, G.B. 1996. Altered brain sodium channeltranscript levels in human epilepsy. Brain Res Mol Brain Res 35(1–2):84–90PubMedCrossRefGoogle Scholar
  79. Lopes da Silva, F.H., Pijn, J.P., and Wadman, W.J. 1994. Dynamics of local neuronal networks:control parameters and state bifurcations in epileptogenesis. Prog Brain Res 102:359–370PubMedCrossRefGoogle Scholar
  80. Loup, F., Wieser, H.G., Yonekawa, Y., Aguzzi, A., and Fritschy, J.M. 2000. Selective alterationsin GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci 20(14):5401–5419PubMedGoogle Scholar
  81. Lukasiuk, K., and Pitkanen, A. 2004. Large-scale analysis of gene expression in epilepsy research:is synthesis already possible. Neurochem Res 29(6):1169–1178PubMedCrossRefGoogle Scholar
  82. Lynch, M., Sayin, U., Bownds, J., Janumpalli, S., and Sutula, T. 2000. Long-term consequencesof early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci 12(7):2252–2264PubMedCrossRefGoogle Scholar
  83. Mackenzie, L., Medvedev, A., Hiscock, J.J., Pope, K.J., and Willoughby, J.O. 2002. Picrotoxininducedgeneralised convulsive seizure in rat: changes in regional distribution and frequencyof the power of electroencephalogram rhythms. Clin Neurophysiol 113(4):586–596PubMedCrossRefGoogle Scholar
  84. Madsen, T.M., Treschow, A., Bengzon, J., Bolwig, T.G., Lindvall, O., and Tingstrom, A. 2000. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47(12):1043–1049PubMedCrossRefGoogle Scholar
  85. Mathern, G.W., Pretorius, J.K., Mendoza, D., Leite, J.P., Chimelli, L., Born, D.E., Fried, I.,Assirati, J.A., Ojemann, G.A., Adelson, P.D., Cahan, L.D., and Kornblum, H.I. 1999. Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsypatients. Ann Neurol 46(3):343–358PubMedCrossRefGoogle Scholar
  86. Matthews, P.M., Andermann, F., and Arnold, D.L. 1990. A proton magnetic resonance spectroscopystudy of focal epilepsy in humans. Neurology 40(6):985–989PubMedCrossRefGoogle Scholar
  87. McCabe, B.K., Silveira, D.C., Cilio, M.R., Cha, B.H., Liu, X., Sogawa, Y., and Holmes, G.L. 2001. Reduced neurogenesis after neonatal seizures. J Neurosci 21(6):2094–2103PubMedGoogle Scholar
  88. McIntyre, D.C., Hutcheon, B., Schwabe, K., and Poulter, M.O. 2002. Divergent GABA(A) receptormediatedsynaptic transmission in genetically seizure-prone and seizure-resistant rats. J Neurosci 22(22):9922–9931PubMedGoogle Scholar
  89. Meierkord, H., Wieshmann, U., Niehaus, L., and Lehmann, R. 1997. Structural consequences ofstatus epilepticus demonstrated with serial magnetic resonance imaging. Acta Neurol Scand 96(3):127–132PubMedCrossRefGoogle Scholar
  90. Meldrum, B.S. 1983. Metabolic factors during prolonged seizures and their relation to nerve celldeath. Adv Neurol 34:261–275PubMedGoogle Scholar
  91. Meldrum, B.S. 2002. Implications for neuroprotective treatments. Prog Brain Res 135:487–495PubMedCrossRefGoogle Scholar
  92. Mellstrom, B., and Naranjo, J.R. 2001. Mechanisms of Ca(2+)-dependent transcription. Curr OpinNeurobiol 11(3):312–319CrossRefGoogle Scholar
  93. Meldrum, B.S., Vigouroux, R.A., and Brierley, J.B. 1973. Systemic factors and epileptic braindamage. Prolonged seizures in paralyzed, artificially ventilated baboons. Arch Neurol 29(2):82–87CrossRefGoogle Scholar
  94. Mody, I., and Heinemann, U. 1987. NMDA receptors of dentate gyrus granule cells participate insynaptic transmission following kindling. Nature 326(6114):701–704PubMedCrossRefGoogle Scholar
  95. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. 1994. Developmentaland regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540PubMedCrossRefGoogle Scholar
  96. Morimoto, K., Fahnestock, M., and Racine, R.J. 2004. Kindling and status epilepticus models ofepilepsy: rewiring the brain. Prog Neurobiol 73(1):1–60PubMedCrossRefGoogle Scholar
  97. Moser, M.B., Trommald, M., andAndersen,P. 1994. An increase in dendritic spine density onhippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formationof new synapses. Proc Natl Acad Sci USA 91(26):12673–12675CrossRefGoogle Scholar
  98. Mueller, S.G., Kollias, S.S., Trabesinger, A.H., Buck, A., Boesiger, P., and Wieser, H.G. 2001. Proton magnetic resonance spectroscopy characteristics of a focal cortical dysgenesis duringstatus epilepticus and in the interictal state. Seizure 10(7):518–524PubMedCrossRefGoogle Scholar
  99. Nagelhus, E.A., Mathiisen, T.M., and Ottersen, O.P. 2004. Aquaporin-4 in the central nervoussystem: cellular and subcellular distribution and coexpression with KIR 4.1. Neuroscience 129(4):905–913PubMedCrossRefGoogle Scholar
  100. Nakagawa, E., Aimi, Y., Yasuhara, O., Tooyama, I., Shimada, M., McGeer, P.L., and Kimura, H. 2000. Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbicseizures in rat models of epilepsy. Epilepsia 41(1):10–18PubMedCrossRefGoogle Scholar
  101. Natsume, J., Bernasconi, N., Andermann, F., and Bernasconi, A. 2003. MRI volumetry of thethalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology 60(8):1296–1300PubMedCrossRefGoogle Scholar
  102. Nissinen, J., Halonen, T., Koivisto, E., and Pitkanen, A. 2000. A new model of chronic temporallobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38(2–3):177–205PubMedCrossRefGoogle Scholar
  103. Nusser, Z., Hajos, N., Somogyi, P., and Mody, I. 1998. Increased number of synaptic GABA(A)receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395(6698):172–177PubMedCrossRefGoogle Scholar
  104. Olney, J.W., and de Gubareff, T. 1978. Glutamate neurotoxicity and Huntington’s chorea. Nature 271(5645):557–559PubMedCrossRefGoogle Scholar
  105. Olney, J.W., and Sharpe, L.G. 1969. Brain lesions in an infant rhesus monkey treated with monsodiumglutamate. Science 166(903):386–388PubMedCrossRefGoogle Scholar
  106. Olsen, M.L., and Sontheimer, H. 2004. Mislocalization of Kir channels in malignant glia. Glia 46(1):63–73PubMedCrossRefGoogle Scholar
  107. Pal, S., Limbrick, D.D., Jr., Rafiq, A., and DeLorenzo, R.J. 2000. Induction of spontaneous recurrentepileptiform discharges causes long-term changes in intracellular calcium homeostaticmechanisms. Cell Calcium 28(3):181–193PubMedCrossRefGoogle Scholar
  108. Pal, S., Sun, D., Limbrick, D., Rafiq, A., and DeLorenzo, R.J. 2001. Epileptogenesis induces longtermalterations in intracellular calcium release and sequestration mechanisms in the hippocampalneuronal culture model of epilepsy. Cell Calcium 30(4):285–296PubMedCrossRefGoogle Scholar
  109. Parent, J.M., Janumpalli, S., McNamara, J.O., and Lowenstein, D.H. 1998. Increased dentategranule cell neurogenesis following amygdala kindling in the adult rat. Neurosci Lett 247(1):9–12PubMedCrossRefGoogle Scholar
  110. Perez, E.R., Maeder, P., Villemure, K.M., Vischer, V.C., Villemure, J.G., and Deonna, T. 2000. Acquired hippocampal damage after temporal lobe seizures in 2 infants. Ann Neurol 48(3):384–387PubMedCrossRefGoogle Scholar
  111. Petroff, O.A., Errante, L.D., Rothman, D.L., Kim, J.H., and Spencer, D.D. 2002. Glutamateglutaminecycling in the epileptic human hippocampus. Epilepsia 43(7):703–710PubMedCrossRefGoogle Scholar
  112. Pickard, L., Noel, J., Henley, J.M., Collingridge, G.L., and Molnar, E. 2000. Developmentalchanges in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunitcomposition in living hippocampal neurons. J Neurosci 20(21):7922–7931PubMedGoogle Scholar
  113. Qiao, X., and Noebels, J.L. 1993. Developmental analysis of hippocampal mossy fiber outgrowthin a mutant mouse with inherited spike-wave seizures. J Neurosci 13(11):4622–4635PubMedGoogle Scholar
  114. Ratzliff, A.H., Santhakumar, V., Howard, A., and Soltesz, I. 2002. Mossy cells in epilepsy: rigormortis or vigor mortis. Trends Neurosci 25(3):140–144PubMedCrossRefGoogle Scholar
  115. Raza, M., Blair, R.E., Sombati, S., Carter, D.S., Deshpande, L.S., and DeLorenzo, R.J. 2004. Evidence that injury-induced changes in hippocampal neuronal calcium dynamicsduring epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci USA 101(50):17522–17527PubMedCrossRefGoogle Scholar
  116. Rugg-Gunn, F.J., Eriksson, S.H., Symms, M.R., Barker, G.J., Thom, M., Harkness, W., andDuncan, J.S. 2002. Diffusion tensor imaging in refractory epilepsy. Lancet 359(9319):1748–1751PubMedCrossRefGoogle Scholar
  117. Salmenpera, T., Kalviainen, R., Partanen, K., Mervaala, E., and Pitkanen, A. 2000. MRI volumetryof the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res 40(2–3):155–170PubMedCrossRefGoogle Scholar
  118. Samuelsson, C., Kumlien, E., Flink, R., Lindholm, D., and Ronne-Engstrom, E. 2000. Decreasedcortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumaticepilepsy. Neurosci Lett 289(3):185–188PubMedCrossRefGoogle Scholar
  119. Sanchez-Carpintero, R., and Neville, B.G. 2003. Attentional ability in children with epilepsy. Epilepsia 44(10):1340–1349PubMedCrossRefGoogle Scholar
  120. Sankar, R., Shin, D.H., Liu, H., Mazarati, A., Pereira de Vasconcelos, A., and Wasterlain, C.G. 1998. Patterns of status epilepticus-induced neuronal injury during development and long-termconsequences. J Neurosci 18(20):8382–8393PubMedGoogle Scholar
  121. Sankar, R., Shin, D., Liu, H., Wasterlain, C., and Mazarati, A. 2002. Epileptogenesis during development:injury, circuit recruitment, and plasticity. Epilepsia 43(Suppl 5):47–53PubMedCrossRefGoogle Scholar
  122. Sarkisian, M.R. 2001. Overview of the current animal models for human seizure and epilepticdisorders. Epilepsy Behav 2(3):201–216PubMedCrossRefGoogle Scholar
  123. Schauwecker, P.E. 2002. Complications associated with genetic background effects in models ofexperimental epilepsy. Prog Brain Res 135:139–148PubMedCrossRefGoogle Scholar
  124. Schwartzkroin, P.A., Baraban, S.C., and Hochman, D.W. 1998. Osmolarity, ionic flux, andchanges in brain excitability. Epilepsy Res 32(1–2):275–285PubMedCrossRefGoogle Scholar
  125. Shewmon, D.A., and Erwin, R.J. 1988. The effect of focal interictal spikes on perceptionand reaction time. I. General considerations. Electroencephalogr Clin Neurophysiol 69(4):319–337CrossRefGoogle Scholar
  126. Sloviter, R.S. 1983. “Epileptic ” brain damage in rats induced by sustained electrical stimulationof the perforant path. I. Acute electrophysiological and light microscopic studies. Brain ResBull 10(5):675–697Google Scholar
  127. Sloviter, R.S., Dean, E., Sollas, A.L., and Goodman, J.H. 1996. Apoptosis and necrosis inducedin different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 366(3):516–533PubMedCrossRefGoogle Scholar
  128. Stanfield, B.B. 1989. Excessive intra- and supragranular mossy fibers in the dentate gyrus of tottering(tg/tg) mice. Brain Res 480(1–2):294–299PubMedCrossRefGoogle Scholar
  129. Stanley, J.A., Cendes, F., Dubeau, F., Andermann, F., and Arnold, D.L. 1998. Proton magneticresonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 39(3):267–273PubMedCrossRefGoogle Scholar
  130. Steinhauser, C., and Seifert, G. 2002. Glial membrane channels and receptors in epilepsy: impactfor generation and spread of seizure activity. Eur J Pharmacol 447(2–3):227–237PubMedCrossRefGoogle Scholar
  131. Straub, H., Kohling, R., Frieler, A., Grigat, M., and Speckmann, E.J. 2000. Contribution of L-typecalcium channels to epileptiform activity in hippocampal and neocortical slices of guinea-pigs. Neuroscience 95(1):63–72PubMedCrossRefGoogle Scholar
  132. Suh, M., Bahar, S., Mehta, A.D., and Schwartz, T.H. 2005. Temporal dependence in uncouplingof blood volume and oxygenation during interictal epileptiform events in rat neocortex. J Neurosci 25(1):68–77PubMedCrossRefGoogle Scholar
  133. Suh, M., Bahar, S., Mehta, A.D., and Schwartz, T.H. 2006a. Blood volume and hemoglobin oxygenationresponse following electrical stimulation of human cortex. Neuroimage 31(1):66–75CrossRefGoogle Scholar
  134. Suh, M., Ma, H., Zhao, M., Sharif, S., and Schwartz, T.H. 2006b. Neurovascular coupling andoximetry during epileptic events. Mol Neurobiol 33(3):181–197CrossRefGoogle Scholar
  135. Sutula, T., Lauersdorf, S., Lynch, M., Jurgella, C., and Woodard, A. 1995. Deficits in radial armmaze performance in kindled rats: evidence for long-lasting memory dysfunction induced byrepeated brief seizures. J Neurosci 15(12):8295–8301PubMedGoogle Scholar
  136. Swann, J.W., Al-Noori, S., Jiang, M., and Lee, C.L. 2000. Spine loss and other dendritic abnormalitiesin epilepsy. Hippocampus 10(5):617–625PubMedCrossRefGoogle Scholar
  137. Taylor, E.R., Hurrell, F., Shannon, R.J., Lin, T.K., Hirst, J., and Murphy, M.P. 2003. Reversibleglutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278(22):19603–19610PubMedCrossRefGoogle Scholar
  138. Tian, G.F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X.,Zielke, H.R., Kang, J., and Nedergaard, M. 2005. An astrocytic basis of epilepsy. Nat Med 11(9):973–981PubMedGoogle Scholar
  139. Tien, R.D., and Felsberg, G.J. 1995. The hippocampus in status epilepticus: demonstration of signalintensity and morphologic changes with sequential fast spin-echo MR imaging. Radiology 194(1):249–256PubMedGoogle Scholar
  140. Torre, E.R., Lothman, E., and Steward, O. 1993. Glial response to neuronal activity: GFAP-mRNAand protein levels are transiently increased in the hippocampus after seizures. Brain Res 631(2):256–264PubMedCrossRefGoogle Scholar
  141. Ueda, Y., Yokoyama, H., Nakajima, A., Tokumaru, J., Doi, T., and Mitsuyama, Y. 2002. Glutamateexcess and free radical formation during and following kainic acid-induced status epilepticus. Exp Brain Res 147(2):219–226PubMedCrossRefGoogle Scholar
  142. Volterra, A., and Meldolesi, J. 2005. Astrocytes, from brain glue to communication elements: therevolution continues. Nat Rev Neurosci 6(8):626–640PubMedCrossRefGoogle Scholar
  143. Vreugdenhil, M., Faas, G.C., and Wadman, W.J. 1998. Sodium currents in isolated rat CA1 neuronsafter kindling epileptogenesis. Neuroscience 86(1):99–107PubMedCrossRefGoogle Scholar
  144. Wang, Y., Majors, A., Najm, I., Xue, M., Comair, Y., Modic, M., and Ng, T.C. 1996. Postictalalteration of sodium content and apparent diffusion coefficient in epileptic rat brain inducedby kainic acid. Epilepsia 37(10):1000–1006PubMedCrossRefGoogle Scholar
  145. Wilson, C.L., Maidment, N.T., Shomer, M.H., Behnke, E.J., Ackerson, L., Fried, I., and Engel, J., Jr. 1996. Comparison of seizure related amino acid release in human epileptic hippocampus versusa chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res 26(1):245–254PubMedCrossRefGoogle Scholar
  146. Wong, M. 2005. Modulation of dendritic spines in epilepsy: cellular mechanisms and functionalimplications. Epilepsy Behav 7(4):569–577PubMedCrossRefGoogle Scholar
  147. Ye, Z.C., Rothstein, J.D., and Sontheimer, H. 1999. Compromised glutamate transport in humanglioma cells: reduction-mislocalization of sodium-dependent glutamate transporters andenhanced activity of cystine-glutamate exchange. J Neurosci 19(24):10767–10777PubMedGoogle Scholar
  148. Yoo, S.Y., Chang, K.H., Song, I.C., Han, M.H., Kwon, B.J., Lee, S.H., Yu, I.K., and Chun, C.K. 2002. Apparent diffusion coefficient value of the hippocampus in patients with hippocampalsclerosis and in healthy volunteers. AJNR Am J Neuroradiol 23(5):809–812PubMedGoogle Scholar
  149. Yung, A.W., Park, Y.D., Cohen, M.J., and Garrison, T.N. 2000. Cognitive and behavioral problemsin children with centrotemporal spikes. Pediatr Neurol 23(5):391–395PubMedCrossRefGoogle Scholar
  150. Zhang, G., Raol, Y.H., Hsu, F.C., Coulter, D.A., and Brooks-Kayal, A.R. 2004. Effects of status epilepticuson hippocampal GABAA receptors are age-dependent. Neuroscience 125(2):299–303PubMedCrossRefGoogle Scholar
  151. Zhao, M., Ma, H., Suh, M., and Schwartz, T.H. 2005. Decrease in brain tissue oxygenation in spiteof an increase in cerebral blood flow during acute focal 4-aminopyridine seizures in rat neocortex,Abstract for Society of Neuroscience Annual Conference, November 12–16Google Scholar
  152. Zipfel, G.J., Babcock, D.J., Lee, J.M., and Choi, D.W. 2000. Neuronal apoptosis after CNSinjury: the roles of glutamate and calcium. J Neurotrauma 17(10):857–869PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Monisha Goyal
    • 1
  1. 1.Department of Neurology, School of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations