Alcohol, Neuron Apoptosis, and Oxidative Stress

  • George I. Henderson
  • Jennifer Stewart
  • Steven Schenker


The aim of this chapter is to present a contemporary overview of ethanol-induced apoptosis in the brain, with a focus on the potential role of oxidative stress and some new concepts related to glia-mediated neuroprotection and selective vulnerability of neurons to ethanol. While ethanol-related oxidative stress and neuron apoptotic death have been documented in the adult brain, the vast majority of reports have centered on the developing organ (Schenker et al., 1990). We address both settings and offer several potential explanations for the high sensitivity of the fetal brain to these toxic responses to ethanol. Of note is that neurotoxic responses to ethanol have been recognized for several decades yet the mechanisms underlying these often devastating effects remain controversial. The following material abundantly illustrates that the setting is multifactorial with multiple ethanol-related perturbations at play, likely with each impacting to different degrees on various brain areas as well as on different neuron and glia populations. Finally, neuron survival and functions are intimately connected to the glia with which neurons are commingled. Such interactions may often be essential to neuron survival and we include a brief overview of recent studies addressing ethanol effects on neuroprotective glia/neuron interactions.


Fetal Brain Apoptotic Death Apoptosis Induce Factor Ethanol Exposure Mitochondrial Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bailey, S.M. and Cunningham, C.C. (2002). Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Rad. Biol. Med. 32:11–16.PubMedCrossRefGoogle Scholar
  2. Bao, Q. and Shi, Y. (2007). Apoptosome: a platform for the activation of initiator caspases. Cell Death Diff. 14:56–65.CrossRefGoogle Scholar
  3. Bignami, A. (1991). Glial cells in the central nervous system. In: Magistretti, P.J. (ed.), Discussions in Neuroscience, vol. 8, Elsevier, Amsterdam, pp. 1–45.Google Scholar
  4. Boveris, A., Llesuy, S., Azzalis, L.A., Giavarotti, L., Simon, K.A., Junqueira, V.B., Porta, E.Z., Vivelda, E.A., and Lissi, E.A. (1997). In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake. Toxicol. Lett. 93:23–28.PubMedCrossRefGoogle Scholar
  5. Calabrese, V., Scapagnini, G., Latteri, S., Colombrita, C., Ravagna, A., Catalano, C., Pennisi, G., Calvani, M., and Butterfield, D.A. (2002). Long-term ethanol administration enhances age-dependent modulation of redox state in different brain regions in the rat: protection by acetyl carnitine. Int. J. Tissue React. 24:97–104.PubMedGoogle Scholar
  6. Carloni, S., Mazzoni, E., and Balduini, W. (2004). Caspase-3 and calpain activities after acute and repeated ethanol administration during the rat brain growth spurt. J. Neurochem. 89:197–203.PubMedCrossRefGoogle Scholar
  7. Cederbaum, A.I. (1989). Introduction: role of lipid peroxidation and oxidative stress in alcohol toxicity. Free Rad. Biol. Med. 7:537–539.PubMedCrossRefGoogle Scholar
  8. Chen, J., Peterson, D., Schenker, S., and Henderson, G.I. (2000). Formation of malondialdehyde adducts in livers of rats exposed to ethanol: Role in ethanol-mediated inhibition of cytochrome c oxidase. Alcoholism: Clin. Exp. Res. 24(4):544–552.CrossRefGoogle Scholar
  9. Chen, J.J., Robinson, N.C., Schenker, S., Frosto, T.A., and Henderson, G.I. (1999). Formation of 4-hydroxynonenal adducts with cytochrome c oxidase in rats following short-term ethanol intake. Hepatology 26:1792–1798.CrossRefGoogle Scholar
  10. Climent, E., Pascual, M., Renau-Piqueras, J., and Guerri, C. (2002). Ethanol exposure enhances cell death in the developing cerebral cortex: role of brain-derived neurotrophic factor and its signaling pathways. J. Neurosci. Res. 68:213–225.PubMedCrossRefGoogle Scholar
  11. Cooper, A.J.L. (1997). Glutathione in the brain: disorders of glutathione metabolism. In: (Rosenberg, R.N., Prusiner, S.B., DiMauro, S., Barchi, R.L. and Kunk, L.M., eds). The Molecular and Genetic Basis of Neurological Disease, Butterworth-Heinemann, Boston, pp. 1195–1230.Google Scholar
  12. Curtin, J.F., Donovan, M., and Cotter, T.G. (2002). Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Metab. 265:49–72.CrossRefGoogle Scholar
  13. Dawson, T.L., Gores, G.J., Nieminen, A.L., Herman, B., and Lemasters, J.J. (1993). Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am. J. Physiol. 264:C961–C967.PubMedGoogle Scholar
  14. de la Monte, S.M. and Wands, J.R. (2001). Mitochondrial DNA damage and impaired mitochondrial function contribute to apoptosis of insulin-stimulated ethanol-exposed neuronal cells. Alcohoism: Clin. Exp. Res. 25:898–906.CrossRefGoogle Scholar
  15. de la Monte, S.M. and Wands, J.R. (2002). Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol. Life Sci. 59:882–893.PubMedCrossRefGoogle Scholar
  16. DeLeve, L. and Kaplowitz, N. (1990). Importance and regulation of hepatic GSH. Semin. Liver Dis. 10:251–266.PubMedCrossRefGoogle Scholar
  17. Delivani, P. and Martin, S.J. (2006). Mitochondrial membrane remodeling in apoptosis: and inside story. Cell Death Diff. 13:2007–2010.CrossRefGoogle Scholar
  18. Del Maestro, R. and McDonald, W. (1989). Subcellular localization of superoxide dismutases, glutathione peroxidase and catalase in developing rat cerebral cortex. Mech. Age Dev. 48:15–21.CrossRefGoogle Scholar
  19. Del Maestro, R. and McDonald, W. (1989). Subcellular localization of superoxide dismutases, glutathione peroxidase and catalase in developing rat cerebral cortex. Mech. Age Dev. 48:15–21.CrossRefGoogle Scholar
  20. Dembele, K., Yao, X.H., Chen, L., and Nyomba, B.L.G. (2006). Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R796–R802.PubMedCrossRefGoogle Scholar
  21. Devi, B.G., Henderson, G.I., Frosto, T.A., and Schenker, S. (1993). Effect of ethanol on rat fetal hepatocytes: studies on cell replication, lipid peroxidation and glutathione. Hepatology 18:648–659.PubMedCrossRefGoogle Scholar
  22. Devi, B.G., Henderson, G.I., Frosto, T.A., and Schenker, S. (1994). Effects of acute ethanol exposure on cultured fetal rat hepatocytes: Relation to mitochondrial functions. Alcoholism: Clin. Exp. Res. 18:1436–1442.CrossRefGoogle Scholar
  23. Devi, B.G., Schenker, S., Mazloum, B., and Henderson, G.I. (1996). Ethanol-induced oxidative stress and enzymatic defenses in cultured fetal rat hepatocytes. Alcohol. 13:1–6.CrossRefGoogle Scholar
  24. Di Luzio, N.R. (1963). Prevention of acute ethanol-induced fatty liver by antioxidants. Physiologist. 6:169–173.Google Scholar
  25. Dreosti, I.E. (1987). Micronutrients, superoxide and the fetus. Neuro. Toxicol. 8:445–450.Google Scholar
  26. Dreosti, I.E., and Partick, E.J. (1987). Zinc, ethanol, and lipid peroxidation in adult and fetal rats. Biol. Trace Element Res. 14:179–191.CrossRefGoogle Scholar
  27. Dringen, R., Gutterer, J.M., Gros, G., and Hirrlinger, J. (2001). Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J. NeuroSci. Res. 66:1003–1008.PubMedCrossRefGoogle Scholar
  28. Dringen, R., Kranich, O., and Hamprecht, B. (1997). The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem. Res. 22:727–733.PubMedCrossRefGoogle Scholar
  29. Dringen, R., Kussmaul, L., Gutterer, J., Hirrlinger, J., and Hamprecht, B. (1999). The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J. Neurochem. 72:2523–2530.PubMedCrossRefGoogle Scholar
  30. Drukarch, B., Schepens, E., Stoof, J., Langeveld, C.H., and Van Muiswinkel, F.L. (1989). Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Rad. Biol. Med. 25:217–220.CrossRefGoogle Scholar
  31. Druse, M.J., Tajuddin, N.F., Gillespie, R.A., and Le, P. (2006). The effects of ethanol and the serotonin (1A) agonist ipsapirone on the expression of the serotonin (1A) receptor and several antiapoptotic proteins in fetal rhombencephalic neurons. Brain Res. 1092:79–86.PubMedCrossRefGoogle Scholar
  32. Dwivedi, S., Sharma, A., Patrick, B., Sharma, R., Awasthi, Y.C. (2007). Role of 4-hydroxynonenal and its metabolites in signaling. Redox Report 12(1):4–10.PubMedCrossRefGoogle Scholar
  33. Ellis, H.M. and Horvitz, H.R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829.CrossRefGoogle Scholar
  34. Esterbauer, H., Zollner, H., and Schaur, R.J. (1990). Aldehydes formed by lipid peroxidation: mechanisms of formation, occurrence, and determination. In: (Virgo-Peifrey, C., ed) Membrane Lipid Oxidation, CRC Press, Boca Raton, FL, pp 239–268.Google Scholar
  35. Falkowsky, P.G. (2006). Tracing oxygen’s imprint on earth metabolic evolution. Science 311:1724–1725.CrossRefGoogle Scholar
  36. Fleury, C., Mignotte, B., and Vayssiere, J.L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochemie 84:131–141.CrossRefGoogle Scholar
  37. Garcia-Ruiz, C., Colell, A., Morales, A., Kaplowitz, N., and Fernandez-Checa, J.C. (1995). Role of oxidative stress generated from mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-nfk B: studies with isolated mitochondria and rat hepatocytes. Mol. Pharmacol. 48:825–834.PubMedGoogle Scholar
  38. Garrido, C., Galluzzi, L., Brunet, M., Puig, P.E., Didelot, C. and Kroemer, G. (2007). Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13:1423–1433.CrossRefGoogle Scholar
  39. Gegg, M.E., Beltran, B., Salas-Pino, S., Bolanos, J.P., Clark, J.B., Moncada, S. and Heales, S.J.R. (2003). Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurons: implications for neuroprotection/ neurodegeneration?. J. Neurochem. 186:228–237.Google Scholar
  40. Gross, A., McDonnell, J.M., and Korsmyer, J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899–1911.PubMedCrossRefGoogle Scholar
  41. Hakem, R., Hakem, A., Duncam, G.S., Henderson, J.T., Woo, M., Soengas, M.S., Elia, A., de la Pompa, J.L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S.A., Lowe, S.W., Penninger, J.M., and Mak, T.W. (1998). Differental requirement for caspase-9 in apoptotic pathways in vivo. Cell 94:339–352.PubMedCrossRefGoogle Scholar
  42. Halliwell, B. and Gutteridge, J.M.C. (eds). (1989). Lipid peroxidation: a radical chain reaction. In: Free Radicals in Biology and Medicine. 2nd edn. Clarendon Press, Oxford, pp. 188–276.Google Scholar
  43. Heaton, M.B., Madoesky, I., Paiva, M., and Siler-Marsiglio, K.I. (2004). Vitamin E amelioration of ethanol neurotoxicity involves modulation of apoptosis-related protein levels in neonatal rat cerebellar granule cells. Dev. Brain Res. 150:117–124.CrossRefGoogle Scholar
  44. Heaton, M.B., Moore, D.B., Paiva, M., Gibbs, T., and Bernard, O. (1999). Bcl-2 overexpression protects the neonatal cerebellum from ethanol neurotoxicity. Brain Res. 817:13–18.PubMedCrossRefGoogle Scholar
  45. Heaton, M.B., Paiva, M., Madosky, I., Mayer, J., and Moore, D.B. (2003). Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: relationship to periods of vulnerability. Dev. Brain Res. 140:237–252.CrossRefGoogle Scholar
  46. Heaton, M.B., Paiva, M., Madosky, I., and Shaw, G. (2003). Ethanol effects on neonatal rat cortex: comparative analysis of neurotrophic factors, apoptosis-related proteins, and oxidative processes during vulnerable and resistant periods. Dev. Brain Res. 145:249–262.CrossRefGoogle Scholar
  47. Heaton, M.B., Paiva, M., Mayer, J., and Miller, R. (2002). Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci. Lett. 334:83–86.PubMedCrossRefGoogle Scholar
  48. Henderson, G.I., Chen, J.J., and Schenker, S. (1999). Ethanol, Oxidative stress, reactive aldehydes, and the fetus. Front. Biosci. 4:541–550.CrossRefGoogle Scholar
  49. Henderson, G.I., Devi, B.G., Perez, A., and Schenker, S. (1995). In utero ethanol exposure elicits oxidative stress in the rat fetus. Alcoholism: Clin. Exp. Res. 19:714–720.CrossRefGoogle Scholar
  50. Hirrlinger, J., Schulz, J.B., and Dringen, R. (2002). Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J. Neurosci. Res. 69:318–326.PubMedCrossRefGoogle Scholar
  51. Horvitz, H.R., Sternberg, P.W., Greenwald, I.S., Fixsen, W., and Ellis, H.M. (1983). Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Springs Harbor Symp. Quant. Biol. 48:453–463.CrossRefGoogle Scholar
  52. Inoue, M., Nakamura, K., Iwahashi, K., Ameno, K., Itoh, M., and Suwaki, H. (2002). Changes of bcl-2 and bax mRNA expressions in the ethanol-treated mouse brain. Nihon Arukoru Yakubutsu Igakkai Zasshi 37:120–129.PubMedGoogle Scholar
  53. Jacobs, J.S. and Miller, M.W. (2001). Proliferation and death of cultured fetal neocortical neurons: effects of ethanol on the dynamics of cell growth. J. Neurocytol. 30:391–401.PubMedCrossRefGoogle Scholar
  54. Jones, K.L., Smith, D.L., Ulleland, C.W., and Streissguth, A.P. (1973). Pattern of malformations in offspring of chronic alcoholics. Lancet 2:999–1000.CrossRefGoogle Scholar
  55. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with —ranging implications in tissue kinetics. Brit. J. Cancer 26:239–257.PubMedCrossRefGoogle Scholar
  56. Kuan, C.Y., Roth, K.A., Flavell, R.A., and Rakic, P. (2000). Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23:291–297.PubMedCrossRefGoogle Scholar
  57. Kuida, K., Haydar, A., Kuan, C.Y., Gu, Y., Taya, C., Karasuyama, H., Su, M.S., Rakic, P., and Flavell, R.A. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337.PubMedCrossRefGoogle Scholar
  58. Kukielka, E., Dicker, E., and Cederbaum, A. (1994). Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch. Biochem. Biophys. 309:377–386.PubMedCrossRefGoogle Scholar
  59. Kumar, S. (2007). Caspases and their many biological functions. Cell Death Diff. 14:66–72CrossRefGoogle Scholar
  60. Lamarche, F., Signorini-Allibe, N., Gonthier, B., and Barret, L. (2004). Influence of vitamin E, sodium selenite, and astrocyte-conditioned medium on neuronal survival after chronic exposure to ethanol. Alcohol 33:127–138.PubMedGoogle Scholar
  61. Lemoine, P., Harrousseau, H., Borteyro, J.P., and Menuer, J.C. (1968). Les enfants de parents alcoholiques; Anomalies observees a propos de 127 cas. Quest Med. 21:467.Google Scholar
  62. Liebler, D.C. and Burr, J.A. (1992). Oxidation of vitamin E during iron-catalyzed lipid peroxidation: Evidence for electron-transfer reactions of the tocoperoxyl radical. Biochemistry 31:8278–8284.PubMedCrossRefGoogle Scholar
  63. Light, K.E., Belcher, S.M., and Pierce, D.R. (2002). Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Neuroscience 114:327–337.PubMedCrossRefGoogle Scholar
  64. Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:47–157.CrossRefGoogle Scholar
  65. Lossi, L. and Merighi, A. (2003). In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog. Neurobiol. 69:287–312.PubMedCrossRefGoogle Scholar
  66. Lovell, MA., Markesbery, WR. (2006). Amyloid beta peptide, 4-hydroxynonenal and apoptosis. Current Alzheimer Research. 3(4):359–64.PubMedCrossRefGoogle Scholar
  67. Maisonpierre, P.C., Belluscio, L.F., Alderson, R.F., Wiegand, S.J., Furth, M.E., Landsay, R.M., and Yancopolos, G.D. (1990). NT-3, BDNF and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509.PubMedCrossRefGoogle Scholar
  68. Mariucci, G., Ambrosini, M.V., Colarieti, L., and Bruschelli, G. (1990). Differential changes in Cu, Zn and Mn superoxide dismutase activity in developing rat brain and liver. Experientia 46:753–755.PubMedCrossRefGoogle Scholar
  69. Martin, L.J. (2001). Neuronal cell death in nervous system development, disease, and injury. Intl. J. Mol. Med. 7:455–478.Google Scholar
  70. Meister, A. and Anderson, M.E. (1983). Glutathione. Ann. Rev. Biochem. 52:711–760.PubMedCrossRefGoogle Scholar
  71. Miller MW (1992) Effects of prenatal exposure to ethanol on cell proliferation and neuronal migration. In: Miller MW (ed) Development of the Central Nervous System: Effects of Alcohol and Opiates, Wiley-Liss, New York. pp 47–69.Google Scholar
  72. Miller, MW. (1995a). Effect of pre- or postnatal exposure to ethanol on the total number of neurons in the principal sensory nucleus of the trigeminal nerve: cell proliferation versus neuronal death. Alcohol Clin Exp Res 19:1359–1364.CrossRefGoogle Scholar
  73. Miller, M.W. (1995b). Relationship of time of origin and death of neurons in rat somatosensory cortex: barrel versus septal cortex and projection versus local circuit neurons. J. Comp. Neurol. 355:6–14.CrossRefGoogle Scholar
  74. Mitchell, E.S. and Snyder-Keller, A. (2003). c-fos and cleaved caspase-3 expression after perinatal exposure to ethanol, cocaine, or the combination of both drugs. Dev. Brain Res. 147:107–117.CrossRefGoogle Scholar
  75. Mitchell, J.J., Paiva, M., and Heaton, M.B. (1999). The antioxidants vitamin E and β-carotene protect against ethanol-induced neurotoxicity in embryonic rat hippocampal cultures. Alcohol 17:163–168.PubMedCrossRefGoogle Scholar
  76. Montoliu, C., Sancho-Tello, M., Azorin, I., Burgal, M., Valles, S., Renau-Piqueras, J., Guerri, C. (1995). Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J Neurochem 65:2561–2570.PubMedCrossRefGoogle Scholar
  77. Mooney, S.M. and Miller, M.W. (2001). Effects of prenatal exposure to ethanol on the expression of bcl-2, bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Res. 911:71–81.PubMedCrossRefGoogle Scholar
  78. Moore, D.B., Walker, D.W., and Heaton, M.B. (1999). Neonatal ethanol exposure alters bcl-2 family mRNA levels in the rat cerebellar vermis. Alcoholism: Clin. Exp. Res. 23:1251–1261.CrossRefGoogle Scholar
  79. Munim, A., Asayama, K., Dobashi, K., Suzuki, K., Kawaoi, A., and Kato, K. (1992). Immunohistochemical localization of superoxide dismutases in fetal and neonatal rat tissues. J. Histochem. Cytochem. 40:1705–1713.PubMedCrossRefGoogle Scholar
  80. Nordmann, R., Riviere, C., and Rouach, H. (1990). Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol Alcohol. 25:231–237.PubMedGoogle Scholar
  81. Obernier, J.A., Bouldin, T.W., and Crews, F.T. (2002). Binge ethanol exposure in adult rats causes necrotic cell death. Alcoholism: Clin. Exp. Res. 26:547–557.CrossRefGoogle Scholar
  82. Olney, J.W., Tenkova, T., Dikranian, K., Muglia, L.J., Jermakowicz, W.J., D’Sa, C., and Roth, K.A. (2002). Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol. Dis. 9:205–219.PubMedCrossRefGoogle Scholar
  83. Polster, B.M., and Fiskum, G. (2004). Mitochondrial mechanisms of neural cell apoptosis. J. Neurochem. 90:1281–1289.PubMedCrossRefGoogle Scholar
  84. Rajgopal, Y., Chetty, C.S., and Vemuri, M.C. (2003). Differential modulation of apoptosis-associated proteins by ethanol in rat cerebral cortex and cerebellum. Eur. J. Pharmacol. 470:117–124.PubMedCrossRefGoogle Scholar
  85. Ramachandran, V., Perez, A., Chen, J., Senthil, D., Schenker, S., and Henderson, G.I. (2001). In utero ethanol exposure causes mitochondrial dysfunction which can result in apoptotic cell death in fetal brain: A potential role for 4-hydroxynonenal. Alcoholism: Clin. Exp. Res. 25:862–871.CrossRefGoogle Scholar
  86. Ramachandran, V., Watts, L.T., Maffi, S.K., Chen, J., Schenker, S., and Henderson, G. (2003). Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J. Neurosci. Res. 74:577–588.PubMedCrossRefGoogle Scholar
  87. Rathinam, M.L., Watts, L.T., Stark, A.A., Mahimaimathan, L., Stewart, J., Schenker, S., and Henderson, G.I. (2006). Astrocyte control of fetal cortical neuron glutathione homeostasis: Up-regulation by ethanol. J. Neurochem. 96:1289–1300.PubMedCrossRefGoogle Scholar
  88. Renis, M., Calabrese, V., Russo, A., Calderone, A., Barcellona, M.L., and Rizza, V. (1996). Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. F.E.B.S. Lett. 390:153–156.CrossRefGoogle Scholar
  89. Reyes, E., Ott, S., Robinson, B. (1993). Effects of in utero administration of alcohol on glutathione levels in brain and liver. Alcohol Clin Exp Res 17:877–881.PubMedCrossRefGoogle Scholar
  90. Ribiere, C., Hininger, I., Saffar-Boccara, C., Sabourault, D., and Nordmann, R. (1994). Mitochondrial respiratory activity and superoxide radical generation in the liver, brain, and heart after chronic ethanol intake. Biochem. Pharmacol. 47:1827–1833.PubMedCrossRefGoogle Scholar
  91. Rohlmann, A. and Wolff, J.R. (1996). Subcellular topography and plasticity of gap junction distribution on astrocytes. In: Spray, D.C., Dermietzel, R. (eds.), Gap Junctions in the Nervous System, Landes, Austin, TX, pp.175–192.Google Scholar
  92. Rouach, H., Park, M.K., Orfanelli, M.T., Janvier, B., and Nordmann, R. (1987). Ethanol-induced oxidative stress in the rat cerebellum. Alcohol Alcohol. 1:207–211.Google Scholar
  93. Rushmore, T.H., Morton, M.R., and Pickett, C.P. (1991). The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266:11632–11639.PubMedGoogle Scholar
  94. Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X., and Choi, A.M.K. (2007). Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 9:49–89.PubMedCrossRefGoogle Scholar
  95. Sagara, J., Miura, K., Bannai, S. Maintenance of neuronal glutathione by glial cells. (1993) J Neurochem 61:1672–1676.PubMedCrossRefGoogle Scholar
  96. Saito, M., Saito, M., Berg, M.J., Guidotti, A., and Marks, N. (1999). Gangliosides attenuate ethanol-induced apoptosis in rat cerebellar granule neurons. Neurochem. Res. 24:1107–1115.PubMedCrossRefGoogle Scholar
  97. Sastry, P.S. and Rao, K.S. (2000). Apoptosis and the nervous system. J. Neurochem. 74:1–20.PubMedCrossRefGoogle Scholar
  98. Schenker, S., Becker, H.C., Randall, C., Phillips, D.K., Baskin, G.S., and Henderson, G.H. (1990). Fetal Alcohol Syndrome: Current status of pathogenesis. Alcoholism: Clin. Exp. Res. 14:635–647.CrossRefGoogle Scholar
  99. Schulz, J.B., Lindenau, J., Seyfried, J. and Dichgans, J. (2000). Glutathione, oxidative stress, and neurodegeneration. Eur. J. Biochem. 267:4904–4911.PubMedCrossRefGoogle Scholar
  100. Shaw, S., Rubin, K.P., and Lieber, C.S. (1983). Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Digest. Dis. Sci. 28:585–589.CrossRefGoogle Scholar
  101. Siler-Marsiglio, K.I., Shaw, G., and Heaton, M.B. (2004). Pycnogenol and vitamin E inhibit ethanol-induced apoptosis in rat cerebellar granule cells. J. Neurobiol. 59:261–271.PubMedCrossRefGoogle Scholar
  102. Spierlings, D., McStay, G., Saleh, M., Bender, C., Chipuk, J., Maurer, U., and Green, D.R. (2005). Connected to death: The (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67.CrossRefGoogle Scholar
  103. Streissguth, A.P., Barr, H.M., and Sampson, P.D. (1990). Moderate prenatal alcohol exposure: effects on child IQ and learning problems at age 72 years. Alcoholism: Clin. Exp. Res. 14:662–669.CrossRefGoogle Scholar
  104. Suthanthiran, M., Anderson, M.E., Sharma, V.K., and Meister, A. (1990). Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc. Natl. Acad. Sci. USA. 87:3343–3347.PubMedCrossRefGoogle Scholar
  105. Tanaka, J., Toku, K., Zhang, B., Isihara, K., Sakanaka, M., and Maeda, N. (1999). Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 28:85–96.PubMedCrossRefGoogle Scholar
  106. Timmer, J.C. and Salvesen, G.S. (2007). Caspase substrates. Cell Death Diff. 14:66–72.CrossRefGoogle Scholar
  107. Tsukamoto, H. (1993). Oxidative stress, antioxidants, and alcoholic liver fibrogenesis. Alcohol 10:465–467.PubMedCrossRefGoogle Scholar
  108. Uchida, K., Szweda, L.I., Chae, H.-Z., and Stadtman, E.R. (1993). Immunochemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc. Natl. Acad. Sci. USA 90:8742–8746.PubMedCrossRefGoogle Scholar
  109. Vaudry, D., Rousselle, C., Basille, M., Falluel-Morel, A., Pamantung, T.F., Fontaine, M., Fournier, A., Vaudry, H., and Gonzalez, B.J. (2002). Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc. Natl. Acad. Sci. USA 99:6398–6403.PubMedCrossRefGoogle Scholar
  110. Wang, X.F. and Cynader, M.S. (2000). Astrocytes provide cysteine to neurons by releasing glutathione. J. Neurochem. 74:1434–1442.PubMedCrossRefGoogle Scholar
  111. Wass, T.S., Simmons, R.W., Thomas, J.D., and Riley, E.P. (2002). Timing accuracy and variability in children with prenatal exposure to alcohol. Alcoholism: Clin. Exp. Res. 26:1887–1896.CrossRefGoogle Scholar
  112. Watts, L.T., Rathinam, M.L., Schenker, S., and Henderson, G.I. (2005). Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J. Neurosci. Res. 80:655–666.PubMedCrossRefGoogle Scholar
  113. Wozniak, D.F., Hartman, R.E., Boyle, M.P., Vogt, S.K., Brooks, A.R., Tenkova, T., Young, C., Olney, J.W., and Muglia, L.J. (2004). Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol. Dis. 17:403–414.PubMedCrossRefGoogle Scholar
  114. Young, C., Klocke, B.J., Tenkova, T., Choi, J., Labruyere, J., Qin, Y.Q., Holtzman, D.M., Roth, K.A., and Olney, J.W. (2003). Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death Differ. 10:1148–1155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • George I. Henderson
    • 1
  • Jennifer Stewart
    • 1
  • Steven Schenker
    • 1
  1. 1.Department of Medicine, Division of Gastroenterology and NutritionUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations