Skip to main content

Neuromorphic Systems: Past, Present and Future

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 657))

Abstract

Neuromorphic systems are implementations in silicon of elements of neural systems. The idea of electronic implementation is not new, but modern microelectronics has provided opportunities for producing systems for both sensing and neural modelling that can be mass produced straightforwardly. We review the the history of neuromorphic systems, and discuss the range of neuromorphic systems that have been developed. We discuss recent ideas for overcoming some of the problems, particularly providing effective adaptive synapses in large numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Argyrakis, A. Hamilton, B. Webb, Y. Zhang, T. Gonos, and R. Cheung. Fabrication and characterization of a wind sensor for integration with neuron circuit. Microelectronic Engineering, 84(1749-1753), 2007.

    Google Scholar 

  2. J. Austin and J. Kennedy. PRESENCE, a hardware implementation of bunary neural networks. In M. Boden L. Niklasson and T. Ziemke, editors, ICANN98: Proceedings of the 8’th international conference on artificial neural networks, volume 1, pages 469–474, 1998.

    Google Scholar 

  3. A.G. Andreou, R.C. Meitzler, K. Strohben, and K.A. Boahen. Analog VLSI neuromorphic image acquisition and pre-processing systems. Neural Networks, 8(7-8):1323–1347, 1995.

    Article  Google Scholar 

  4. J.A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of Research. MIT Press, Cambridge, 1988.

    Google Scholar 

  5. I. Aleksander and T.J. Stonham. Guide to pattern recognition using random access memories. IEE Proceedings: Computers and Digital Techniques, 40:2–29, 1979.

    Google Scholar 

  6. I. Aleksander, W.V. Thomas, and P.A. Bowden. WISARD a radical step forward in image recognition. Sensor Review, 4(3):120–124, 1984.

    Article  Google Scholar 

  7. C. Bartolozzi and G. Indiveri. Synaptic dynamics in analog VLSI. Neural Computation, 19:2581–2603, 2007.

    Article  PubMed  Google Scholar 

  8. K.A. Boahen. Point-to-point connectivity between neuromorphic chips using address-events. IEEE Transactions on Curcuits and Systems II, 47(5):416–434, 2000.

    Article  Google Scholar 

  9. W.H. Brockman. A simple electronic neuron model incorporating both active and passive responses. IEEE Transactions on Biomedical Engineering, BME-26:635–639, 1979.

    Google Scholar 

  10. S. Bush. HP nano device implements memristor. Electronics Weekly, May 2008.

    Google Scholar 

  11. E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, L. Carota, S. Fusi, and P. Del Giudice. A vlsi recurrent network of integrate-and-fire neurons connected by plastic synapses with long term memory. IEEE Transactions on Neural Networks, 14(5):1409–1416, 2003.

    Article  Google Scholar 

  12. Intel Corporation. 80170NN electrically trainable analog neural network. Datasheet, 1990.

    Google Scholar 

  13. M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Ekeberg, and A. Lansner. Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM Journal of Research and Development, 52(1/2), 2008.

    Google Scholar 

  14. T. Delbruck and C.A. Mead. Analog VLSI transduction. Technical Report CNS Memo 30, California Institute of Technology Computation and neural Systems Program, Pasadena California, USA, April 1996.

    Google Scholar 

  15. C. Diorio, P. Hasler, B.A. Minch, and C.A. Mead. A single-transistor silicon synapse. IEEE Transactions on Electron Devices, 43(11):1982–1980, 1996.

    Article  Google Scholar 

  16. J.G. Elias. Artificial dendritic trees. Neural Computation, 5(4):648–664, 1993.

    Article  Google Scholar 

  17. P. Furth and A.G. Andreou. A design framework for low power analog filter banks. IEEE Transactions on Circuits and Systems, 42(11):966–971, November 1995.

    Article  Google Scholar 

  18. R. Fitzhugh. An electronic model of the nerve membrane for demonstration purposes. Journal of applied physiology, 21:305–308, 1966.

    PubMed  CAS  Google Scholar 

  19. E. Fragniére, A. van Schaik, and E.A. Vittoz. Design of an analogue VLSI model of an active cochlea. Analog Integrated Circuits and Signal Processing, 12:19–35, 1997.

    Article  Google Scholar 

  20. M. Glover, A. Hamilton, and L.S. Smith. Analogue VLSI leaky integrated-and-fire neurons and their use in a sound analysis system. Analog Integrated Circuits and Signal Processing, 30(2):91–100, 2002.

    Article  Google Scholar 

  21. W. Gerstner and W. Kistler. Spiking Neural Models. Cambridge, 2002.

    Google Scholar 

  22. P.A. Hammond, D. Ali, and D.R.S. Cumming. Design of a single-chip pH sensor using a conventional 0.6-μm CMOS process. IEEE Sensors Journal, 4(6):706–712, 2004.

    Google Scholar 

  23. S.R. Hameroff. The brain is both a neurocomputer and a quantum computer. Cognitive Science, 31:1033–1045, 2007.

    Article  Google Scholar 

  24. D. Hsu, M. Figueroa, and C. Diorio. Competitive learning with floating-gate circuits. IEEE Transactions on Neural Networks, 13:732–744, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. A.L. Hodgkin and A.F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant squid axon of loligo. Journal of Physiology, 116:449–472, 1952.

    PubMed  CAS  Google Scholar 

  26. N. Hirokawa. Molecular architecture and dynamics of the neuronal cytoskeleton. In R.D. Burgoyne, editor, The neuronal cytoskeleton. Wiley-Liss, 1991.

    Google Scholar 

  27. T.J. Hamilton, C. Jin, A. van Schaik, and J. Tapson. An active 2-d silicon cochlea. IEEE Transactions on biomedical circuits and systems, 2(1):30–43, 2008.

    Article  Google Scholar 

  28. R.R. Harrison and C. Koch. An analog VLSI model of the fly elementary motion detector. In M.I. Jordan, J. Kearns, and S.A. Solla, editors, Adcanves in Neural Information Processing Systems 10, pages 880–886. MIT Press, 1998.

    Google Scholar 

  29. R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.

    Google Scholar 

  30. A.M. Hodge and R.W. Newcomb. Evaluation of the VLSI adaptation of the chemfet, a biosensor forfluid analysis. In IEEE International Symposium on Circuits and Systems, ISCAS 2002., volume 2, pages II580–II583, 2002.

    Google Scholar 

  31. G. Indiveri. Analogue VLSI model of locust DCMD neuron response for computation of object aproach. In L.S. Smith and A. Hamilton, editors, Neuromorphic Systems: engineering silicon from neurobiology, pages 47–60, 1998.

    Google Scholar 

  32. R.H. Johnson and G.R. Hanna. Membrane model: a single transistoranalog of excitable membrane. Journal of Theoretical Biology, 22:401–411, 1969.

    Article  PubMed  CAS  Google Scholar 

  33. T.J. Koickal, A. Hamilton, S.L. Tan, J.A. Covington, J.W. Gardner, and T.C. Pearce. Analog VLSI circuit implementation. of an adaptive neuromorphic olfaction chip. In IEEE International Symposium on Circuits and Systems (ISCAS) IEEE International Symposium on Circuits and Systems (ISCAS),Kobe, JAPAN, volume 54, pages 60–73, 2005.

    Google Scholar 

  34. W.J. Karplus and W.W. Soroka. Analog Methods: Computation and Simulation. McGraw-Hill, 1959.

    Google Scholar 

  35. W. Liu, A.G. Andreou, and M.H. Goldstein Jr. Analog cochlear model for multiresolution speech analysis. In Advances in Neural Information Processing Sytems 5, pages 666–673, 1993.

    Google Scholar 

  36. W. Liu, A.G. Andreou, and M.H. Goldstein Jr. Voiced speech representation by an analog silicon model of the auditory periphery. IEEE Trans. Neural Networks, 3(3):477–487, 1993.

    Article  Google Scholar 

  37. L. Lapique. Sur l’excitation electrique des nerfs. Journal of Physiology, Paris, pages 620–635, 1907.

    Google Scholar 

  38. E.R. Lewis. An electronic model of the neuroelectric point process. Kybernetik, 5:30–46, 1968.

    Article  PubMed  CAS  Google Scholar 

  39. S-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas. Analog VLSI: Circuits and Principles. MIT Press, 2002.

    Google Scholar 

  40. R.F. Lyon and C. Mead. An analog electronic cochlea. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7):1119–1134, 1988.

    Article  Google Scholar 

  41. J. Lazzaro and C. Mead. Circuit models of sensory transduction in the cochlea. In Analog VLSI implementations of neural networks, pages 85–101. Kluwer, 1989.

    Google Scholar 

  42. J. Lazzaro and C. Mead. Silicon modeling of pitch perception. Proceedings of the National Academy of Sciences of the United States, 86(23):9597–9601, 1989.

    Article  CAS  Google Scholar 

  43. J. Lazzaro and C.A. Mead. A silicon model of auditory localization. Neural Computation, 1(1):47–57, 1989.

    Article  Google Scholar 

  44. P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 120db 15 μs latency asynchronous temporal contrast vision detector. IEEE Journal of Solid-state Circuits, 43(2):566–576, 2008.

    Article  Google Scholar 

  45. J. Lazzaro, S. Ryckebush, M.A. Mahowald, and C.A. Mead. Winner-take-all networks of O(n) complexity. In D. Touretzky, editor, Advances in Neural Inforpation Processing Systems, pages 703–711, 1989.

    Google Scholar 

  46. J. Lazzaro and J. Wawrzynek. Speech recognition experiments with silicon auditory models. Analog Integrated Circuits and Signal Processing, 13:37–51, 1997.

    Article  Google Scholar 

  47. C. Mead and L.A. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

    Google Scholar 

  48. M. Mahowald and R. Douglas. A silicon neuron. Nature, 354(6354):515–518, 1991.

    Article  PubMed  CAS  Google Scholar 

  49. C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

    Google Scholar 

  50. P. Merolla. A Silicon Model of the Primary Visual Cortex: Representing Features Through Stochastic Variations. PhD thesis, Department of Bioengineering, University of Philadelphia, PA, USA, 2006.

    Google Scholar 

  51. C.M. Markan and P. Gupta. Neuromorphic building blocks for adaptable cortical feature maps. In IFIP International conference on VLSI, pages 7–12, 2007.

    Google Scholar 

  52. B.A. Minch, P. Hasler, C. Diorio, and C. Mead. A silicon axon. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in Neural Information Processing Systems 7. MIT Press, 1995.

    Google Scholar 

  53. L. McDaid, J. Harkin, S. Hall, T. Dowrick, Y. Chen, and J. Marsland. EMBRACE: emulating biologically-inspired architectures on hardware. In NN’08: Proceedings of the 9th WSEAS International Conference on Neural Networks, pages 167–172, Stevens Point, Wisconsin, USA, 2008. World Scientific and Engineering Academy and Society (WSEAS).

    Google Scholar 

  54. C. Mead and M.A. Mahowald. A silicon model of early visual processing. Neural networks, 1(1):91–97, 1988.

    Article  Google Scholar 

  55. W.S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 1943. Reprinted in (AR88).

    Google Scholar 

  56. D.P.M. Northmore and J.G. Elias. Spike train processing by a silicon neuromorph: The role of sublinear summation in dendrites. Neural Computation, 8(6):1245–1265, 1996.

    Article  PubMed  CAS  Google Scholar 

  57. A. Nogaret, N.J. Lambert, S.J. Bending, and J. Austin. Artificial ion channels and spike computation in modulation-doped semiconductors. Europhysics Letters, 68(6):874–880, 2004.

    Article  CAS  Google Scholar 

  58. P.O. Pouliquen, A.G. Andreou, and K. Strohben. Winner-takes-all associative memory. Analog Integrated Circuits and Signal Processing, 13(1-2):211–222, 1997.

    Article  Google Scholar 

  59. T.C. Pearce. Computational parallels between the biological olfactory pathway and its analogue ‘the electronic nose’. 2. sensor-based machine olfaction. Biosystems, 41(2):69–90, 1997.

    Google Scholar 

  60. M. Pearson, M. Nibouche, I. Gilhespy, K. Gurney, C. Melhuish, B. Mitchison, and A.G. Pipe. A hardware based implementation of a tactile sensory system for neuromorphic signal processing applications. In IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 4, May 2006.

    Google Scholar 

  61. C. Rasche and R.J. Douglas. An improved silicon neuron. Analog Integrated Circuits and Signal Processing, 23(3):227–236, 2000.

    Article  Google Scholar 

  62. C. Rasche and R.J. Douglas. Forward- and backpropagation in a silicon dendrite. IEEE Transactions on Neural Networks, 12(2), 2001.

    Google Scholar 

  63. C. Rasche, R.J. Douglas, and M. Mahowald. Characterization of a silicon pyramidal neuron. In L.S. Smith and A. Hamilton, editors, Neuromorphic Systems: Engineering Silicon from Neurobiology. World Scientific, 1998.

    Google Scholar 

  64. G. Roy. A simple electronic analog of the squid axonmembrane: the neuroFET. IEEE Transactions on Biomedical Engineering, BME-18:60–63, 1972.

    Google Scholar 

  65. D. Roy. Design and developmental metrics of a ‘skin-like’ multi-input quasi-compliant robotic gripper sensor using tactile matrix. Journal of Intelligent and Robotic Systems, 46(4):305–337, 2006.

    Article  Google Scholar 

  66. R.G. Runge, M. Uemura, and S.S. Viglione. Electronic synthesis of the avian retina. IEEE Transactions on Biomedical Engineering, BME-15:138–151, 1968.

    Google Scholar 

  67. Andr Van Schaik, Eric Fragniere, and Eric Vittoz. An analogue electronic model of ventral cochlear nucleus neurons. In 5th International Conference on Microelectronics for Neural Networks and Fuzzy Systems (MicroNeuro ’96), 1996.

    Google Scholar 

  68. H.V. Shurmer and J.W. Gardner. Odor discrimination with an electronic nose. Sensors and Actuators B-Chemical, 8(11):1–11, 1992.

    Article  Google Scholar 

  69. A. Samardak, A. Nogaret, S. Taylor, J. Austin, I. Farrer, and D.A. Ritchie. An analogue sum and threshold neuron based on the quantum tunnelling amplification of neural pulses. New Journal of Physics, 10, 2008.

    Google Scholar 

  70. G.S. Snider, P.J. Kuekes, and D.R. Stewart. Nanoscale lacth-array processing engines. US Patent number 7227993, June 2007.

    Google Scholar 

  71. D.B. Strukov, G.S. Snider, D.R. Stewart, and S.R. Williams. The missing memristor found. Nature, 453:80–83, 2008.

    Article  PubMed  CAS  Google Scholar 

  72. Andre Van Schaik and Eric Vittoz. A silicon model of amplitude modulation detection in the auditory brainstem. In Advances in NIPS 9, pages 741–747. MIT Press, 1997.

    Google Scholar 

  73. G. Vasarhelyi, M. Adam, E. Vazsonyi, A. Kis, I. Barsony, and C. Ducso. Characterization of an integrable single-crystalline 3-d tactile sensor. IEEE Sensors journal, 6(4):928–934, 2006.

    Article  CAS  Google Scholar 

  74. J.H.B. Wijekoon and P. Dudek. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Networks, 21:524–534, 2008.

    PubMed  Google Scholar 

  75. B. Widrow. An adaptive “adaline” neuron using chemical “memistors”. Technical Report 1553-2, Stanford University, Solid-state electronics laboratory, Stanford electronics laboratories, Stansted University, Stansted, California, October 1960.

    Google Scholar 

  76. S. Wolpert and E. Micheli-Tzanakou. A neuromime in VLSI. IEEE Transactions on Neural Networks, 7(2):300–306, 1996.

    Article  PubMed  CAS  Google Scholar 

  77. D.H.B. Wicaksono, L.-J. Zhang, G. Pandraud, and P.J. French. Fly’s proprioception-inspired micromachined strain-sensing structure: idea, design, modeling and simulation, and comparison with experimental results. In J. Physics: Conference Series: International MEMS Conference 2006, volume 34, pages 336–341, 2006.

    Google Scholar 

  78. Z. Yang, A.F. Murray, F. Woergoetter, K.L. Cameron, and V. Boonsobhak. A neuromorphic depth-from-motion vision model with stdp adaptation. IEEE Transactions on Neural Networks, 17(2):482–495, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work started off as a talk at BICS 2008, and was revised through being given as a seminar at Stirling University and the University of Surrey, and in the light of the referees’ comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie S. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Smith, L.S. (2010). Neuromorphic Systems: Past, Present and Future. In: Hussain, A., Aleksander, I., Smith, L., Barros, A., Chrisley, R., Cutsuridis, V. (eds) Brain Inspired Cognitive Systems 2008. Advances in Experimental Medicine and Biology, vol 657. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79100-5_9

Download citation

Publish with us

Policies and ethics