Peritoneal Dialysis in Diabetic End-Stage Renal Disease

The management of diabetic patients with end-stage renal disease (ESRD) has undergone significant changes over the past few decades. Diabetics with extensive co-morbid diseases are generally accepted for chronic dialysis despite the inevitably poor long-term prognosis [1–4]. As a result, diabetes has become the most prevalent cause of ESRD in the United States. Between 1984 and 1997, the percentage of new patients starting renal replacement therapy (RRT) with ESRD due to diabetes increased from 27% to 42.9% in United States [5]. The 1- and 2-year mortality for diabetic patients in peritoneal dialysis (PD) between the years 1989 and 1998 has decreased by 26.6 and 20% per 1,000 patient years, respectively [5]. However, diabetic renal disease still has one of the highest mortality rates at the end of first year of dialysis when compared to renal transplantation and dialysis in nondiabetics [6]. Diabetic patients, regardless of dialysis modality, continue to have the lowest 5 year survival [7]. Nearly half of the diabetic patients begun on dialysis do not survive beyond 2 years, and less than one in five diabetic patients undergoing maintenance dialysis is capable of any activity beyond personal care [8]. Renal transplantation is the generally preferred treatment for diabetic patients with end-stage renal failure because it leads to better quality of life than any form of dialysis [9].

References

  1. 1.
    Friedman EA. Clinical imperatives in diabetic nephropathy. Kidney Int 1982; 23 (suppl.): S16–S19.Google Scholar
  2. 2.
    Friedman EA. Overview of diabetic nephropathy. In: Keen H, Legrain M, eds. Prevention and Treatment of Diabetic Nephropathy. Lancaster: MTP, 1983, pp. 3–19.Google Scholar
  3. 3.
    Friedman EA. Clinical strategy in diabetic nephropathy. In: Friedman E, l’Esperance F, eds. Diabetic Renal-Retinal Syndrome. New York: Grune & Stratton, 1986, vol. 3, pp. 331–337.Google Scholar
  4. 4.
    Legrain M. Diabetics with end-stage renal disease: the best buy (Editorial). Diabetic Nephropathy 1983; 2: 1–3.Google Scholar
  5. 5.
    US Renal Data System. USRDS 2001 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2001.Google Scholar
  6. 6.
    Patient mortality and survival. Unites States Renal Data System 1998 Annual Data Report. Am J Kidney Dis 1998; 32: S69–S80.Google Scholar
  7. 7.
    US Renal Data System. Excerpts from the USRDS 2006 Annual Data Report. Am J Kidney Dis 2006; 49 (suppl. 1): S1–S296.Google Scholar
  8. 8.
    US Renal Data Systems. USRDS 1989 Annual Data Report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, August 1989.Google Scholar
  9. 9.
    Friedman EA. How can the care of diabetic ESRD patients be improved? Semin Dial 1991; 4: 13–14.Google Scholar
  10. 10.
    Katirtzoglou A, Izatt S, Oreopoulos DG. Chronic peritoneal dialysis in diabetics with end-stage renal failure. In: Friedman EA, ed. Diabetic Renal-Retinal Syndrome. Orlando, FL: Grune & Stratton, 1982, pp. 317–332.Google Scholar
  11. 11.
    Blumenkrantz MJ, Shapiro DJ, Minura N, et al. Maintenance peritoneal dialysis as an alternative in the patients with diabetes mellitus and end-stage uremia. Kidney Int 1974; 6 (suppl. 1): S108.Google Scholar
  12. 12.
    Quelhorst E, Schuenemann B, Mietzsch G, Jacob I. Hemo and peritoneal dialysis treatment of patients with diabetic nephropathy. A comparative study. Proc Eur Dial Transplant Assoc 1978; 15: 205.PubMedGoogle Scholar
  13. 13.
    Mion C, Slingeneyer A, Salem JL, Oules R, Mirouze J. Home peritoneal dialysis in end stage diabetic nephropathy. J Dial 1978; 2: 426–427.Google Scholar
  14. 14.
    Warden GS, Maxwell JG, Stephen RL. The use of reciprocating peritoneal dialysis with a subcutaneous peritoneal dialysis in end stage renal failure in diabetes mellitus. J Surg Res 1978; 24: 495–500.PubMedGoogle Scholar
  15. 15.
    Amair P, Khanna R, Leibel B, et al. Continuous ambulatory peritoneal dialysis in diabetics with end-stage renal disease. N Engl J Med 1982; 306: 625–630.PubMedGoogle Scholar
  16. 16.
    Legrain M, Rottembourg J, Bentchikou A, et al. Dialysis treatment of insulin dependent diabetic patients. A ten year experience. Clin Nephrol 1984; 21: 72–81.PubMedGoogle Scholar
  17. 17.
    Lameire N, Dhaene M, Mattthys E, et al. Experience with CAPD in diabetic patients. In: Keen H, Legrain M, eds. Prevention and Treatment of Diabetic Nephropathy. Lancaster: MTP, 1983, pp. 289–297.Google Scholar
  18. 18.
    Polla-Imhoof B, Pirson Y, Lafontaine JJ, et al. Resultats de l’hémodialyse chronique et de la transplantation rénale dans le traitement de l’urémie terminale du diabétique. Nephrologie 1982; 3: 80–84.PubMedGoogle Scholar
  19. 19.
    Thompson NM, Simpson RW, Hooke D, Atkins RC. Peritoneal dialysis in the treatment of diabetic end stage renal failure. In: Atkins R, Thomson NM, Farell PC, eds. Peritoneal Dialysis. New York: Churchill Livingstone, 1981, pp. 345–355.Google Scholar
  20. 20.
    Khanna R, Wu G, Chisholm L, Oreopoulos DG. Update: Further experience with CAPD in diabetics with end stage disease. Diabetic Nephropathy 1983; 2: 8–12.Google Scholar
  21. 21.
    Khanna R, Wu G, Prowant B, Jastrzebska J, Nolph KD, Oreopoulos DG. Continuous ambulatory peritoneal dialysis in diabetics with end stage renal disease: a combined experience of two North American centers. In: Friedman E, l’Esperance F, eds. Diabetic Renal Retinal Syndrome. New York: Grüne & Stratton, 1986, vol. 3, pp. 363–381.Google Scholar
  22. 22.
    Rottembourg J. Le traitement de l’insuffisance rénale du diabétique. Presse Med 1987; 46: 437–440.Google Scholar
  23. 23.
    Shapiro FL. Haemodialysis in diabetic patients. In: Keen H, Legrain M, eds. Prevention and Treatment of Diabetic Nephropathy. Lancaster: MTP, 1983, pp. 247–259.Google Scholar
  24. 24.
    Khanna R, Oreopoulos DG. Continuous ambulatory peritoneal dialysis in diabetics. In: Brenner BM, Stein JH, eds. The Kidney in Diabetes Mellitus. New York: Churchill Livingstone, 1989, pp. 185–202.Google Scholar
  25. 25.
    Mauer SM, Morgensen CE, Kjellstrand CM. Diabetic nephropathy. In: Schrier RW, Gottschalk CW, eds. Diseases of the Kidney. Boston: Little, Brown, 1993, pp. 2153–2188.Google Scholar
  26. 26.
    Narins RG, Krishna GG, Kopyt NP. Fluid–electrolyte and acid–base disorders complicating diabetes mellitus. In: Schrier RW, Gottschalk CW, eds. Diseases of the Kidney. Boston: Little, Brown, 1993, pp. 2563–2597.Google Scholar
  27. 27.
    United States Renal Data System. The USRDS Dialysis Morbidity and Mortality Study, Wave 2. Am J Kidney Dis 1997; 30 (suppl. 1): S67–S85.Google Scholar
  28. 28.
    Bonomini V, Feletti C, Scolari MP, Stefoni S. Benefits of early initiation of dialysis. Kidney Int 1985; 28: S57–S59.Google Scholar
  29. 29.
    Tattersal J, Greenwood R, Farrington K. Urea kinetics and when to commence dialysis. Am J Nephrol 1995; 15: 283–289.Google Scholar
  30. 30.
    Churchill DN. An evidence based approach to initiation of dialysis. Am J Kidney Dis 1997; 30: 899–906.PubMedGoogle Scholar
  31. 31.
    Mehrotra R, Nolph D. Argument for timely initiation of dialysis. J Am Soc Nephrol 1998; 9: S96–S99.PubMedGoogle Scholar
  32. 32.
    K/DOQI Clinical Practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis 2006; 47 (suppl. 4): S1.Google Scholar
  33. 33.
    Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs 1968; 14: 181.PubMedGoogle Scholar
  34. 34.
    Khanna R, Twardowski ZJ. Peritoneal dialysis. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1989, pp. 319–343.Google Scholar
  35. 35.
    Lindblad AS, Novak JW, Nolph KD, et al. A survey of diabetics in the CAPD/CCPD population. In: Lindblad AS, Novak JW, Nolph KD, eds. Continuous Ambulatory Peritoneal Dialysis in the USA. Dordrecht: Kluwer, 1989, pp. 63–74.Google Scholar
  36. 36.
    Twardowski ZJ, Nolph KD, Khanna R, Gluck Z, Prowant BF, Ryan LP. Daily clearances with continuous ambulatory peritoneal dialysis and nightly peritoneal dialysis. Trans Am Soc Artif Intern Organs 1986; 32: 575–580.Google Scholar
  37. 37.
    Khanna R, Twardowski ZJ, Gluck Z, Ryan LP, Nolph KD. Is nightly peritoneal dialysis (NPD) an effective peritoneal dialysis schedule? Abstracts, American Society of Nephrology – Kidney Int 1986; 29: 233.Google Scholar
  38. 38.
    Nolph KD, Twardowski ZJ, Khanna R. Clinical pathology conference: peritoneal dialysis. Trans Am Soc Artif Intern Organs 1986; 32: 11–16.Google Scholar
  39. 39.
    Scribner BH. Foreword to second edition. In: Nolph KD, ed. Peritoneal Dialysis. Boston: Martinus Nijhoff Publishers, 1985, pp. xi–xii.Google Scholar
  40. 40.
    Twardowski ZJ, Khanna R, Nolph KD, et al. Intraabdominal pressure during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 129–135.PubMedGoogle Scholar
  41. 41.
    Twardowski ZJ. New approaches to intermittent peritoneal dialysis therapies. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1988, pp. 133–151.Google Scholar
  42. 42.
    Diaz-Buxo JA. Continuous cyclic peritoneal dialysis. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1989, pp. 169–183.Google Scholar
  43. 43.
    Perras ST, Zappacosta AR. Reduction of peritonitis with patients education and Travenol CAPD germicidal exchange system. Am Nephrol Nurses Assoc 1986; 13: 219.Google Scholar
  44. 44.
    Hamilton RW. The sterile connection device: a review of its development and status report – 1986. In: Khanna R, Nolph KD, Prowant BF et al., eds. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin, Inc., 1986, pp. 186–189.Google Scholar
  45. 45.
    Fenton SSA, Wu G, Bowman C, et al. The reduction in the peritonitis rate among high-risk CAPD patients with the use of the Oreopoulos–Zellerman connector. Trans Am Soc Artif Intern Organs 1985; 31: 560.PubMedGoogle Scholar
  46. 46.
    Buoncristiani U, Quintalinani G, Cozzari M, Carobia C. Current status of the Y-set. In: Khanna R, Nolph KD, Powant BF, et al., eds. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin, Inc., 1986, pp. 165–171.Google Scholar
  47. 47.
    Flynn CT. The diabetics on CAPD. In: Friedman EA, ed. Diabetic Renal-Retinal Syndrome. Orlando, FL: Grune & Stratton, 1982, pp. 321–330.Google Scholar
  48. 48.
    Popovich RP, Moncrief JW. Kinetic modeling of peritoneal transport. Contrib Nephrol 1979; 17: 59–72.PubMedGoogle Scholar
  49. 49.
    Keshaviah PR, Nolph KD, Prowant B, et al. Defining adequacy of CAPD with urea kinetics. Adv Perit Dial 1990; 6: 173–177.PubMedGoogle Scholar
  50. 50.
    Churchill DN, Taylor DW, Keshaviah PR. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol 1996; 7: 198–207.Google Scholar
  51. 51.
    Lindholm B, Bergström J. Nutritional management of patients undergoing peritoneal dialysis. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1988, pp. 230–260.Google Scholar
  52. 52.
    Lamb E, Catell WR, Dawnay AB. Glycated albumin in serum and dialysate of patients on continuous ambulatory peritoneal dialysis. Clin Sci 1993; 84: 619–626.PubMedGoogle Scholar
  53. 53.
    Lamb E, Catell WR, Dawnay AB. In vitro formation of advanced glycation end products in peritoneal dialysis fluid. Kidney Int 1995; 47: 1768–1774.PubMedGoogle Scholar
  54. 54.
    Friedlander MA, Wu YC, Elgawish A, Monnier V. Early and advanced glycation end products. Kinetics of formation and clearance in peritoneal dialysis fluid. J Clin Invest 1996; 97: 728–735.PubMedGoogle Scholar
  55. 55.
    Mahiout A, Ehlerding G, Brunkhorst R. Advanced glycation end products in the peritoneal fluid and in the peritoneal membrane of continuous ambulatory peritoneal dialysis patients. Nephrol Dial Transplant 1996; 11 (suppl. 5): 2–6.PubMedGoogle Scholar
  56. 56.
    Stout RW. Diabetes and atherosclerosis – the role of insulin. Diabetologia 1979; 16: 141.PubMedGoogle Scholar
  57. 57.
    Zavaroni A, Bonora E, Pagliara M, et al. Risk factor for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320: 702–706.PubMedGoogle Scholar
  58. 58.
    Selby NM, Fonseca S, Hulme L, Fluck RJ, Taal MW, McIntyre CW. Hypertonic glucose based peritoneal dialysate is associate with higher blood pressure and adverse hemodynamics as compared to icodextrin. Nephrol Dial Transplant. 2005; 20 (9): 1848–1853.PubMedGoogle Scholar
  59. 59.
    Bazzato G, Coli U, Landini S. Xylitol and low doses of insulin: new perspectives for diabetic uremic patients on CAPD. Perit Dial Bull 1982; 2: 161.Google Scholar
  60. 60.
    Williams FP, Marliss EB, Anderson GH, et al. Amino acids absorption following intraperitoneal administration in CAPD patients. Perit Dial Bull 1982; 2: 124.Google Scholar
  61. 61.
    Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986; 42: 93.PubMedGoogle Scholar
  62. 62.
    Mistry CD, Mallick NP, Gokal R. The use of large molecular weight glucose polymer as an osmotic agent in CAPD. In: Khanna R, Nolph KD, Prowant BF et al., eds. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin, Inc., 1986, pp. 7–11.Google Scholar
  63. 63.
    Matthys E, Dolkart R, Lameire N. Extended use of a glycerol containing dialysate in the treatment of diabetic CAPD patients. Perit Dial Bull 1987; 7: 10.Google Scholar
  64. 64.
    Imholz ALT, Lameire N, Faict D, Koomen GCM, Krediet RT, Martis L. Evaluation of short-chain polypeptides as an osmotic agent in CAPD patients. Perit Dial Int 1993; 13: S62.Google Scholar
  65. 65.
    Scanziani R, Dozio B, Iacuitti G. CAPD in diabetics: use of aminoacids. In: Ota K, Maher J, Winchester J, Hirszel P, eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1993, pp. 628–632.Google Scholar
  66. 66.
    Goodship THJ, Heaton A, Wilkinson R, Ward MK. The use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. In: Ota K, Maher J, Winchester J, Hirszel P, eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 143–147.Google Scholar
  67. 67.
    Mistry CD, Gokal R. The use of glucose polymer in CAPD: essential physiological and clinical conclusions. In: Oka K, Maher J, Winchester J, Hirszel P, eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 138–142.Google Scholar
  68. 68.
    Peers E, Gokal R. Icodextrin: overview of clinical experience. Perit Dial Int 1997; 17: 22–26.PubMedGoogle Scholar
  69. 69.
    Marshall J, Jennings P, Scott A, Fluck RJ, Mcintyr CW. Glycemic control in diabetic CAPD patients assessed by continuous glucose monitoring system. Kidney Int 2003; 64: 1480–1486.PubMedGoogle Scholar
  70. 70.
    Davis SJ, Brown EA, Frandsen, NE, Rodrigues AS, Rodriguez-Carmona A, Vychytil A, Macnamara E, Ekstrand A, Tranaeus A, Divino Filho JC on behalf of the EAPOS group. Longitudinal membrane function in functionally anuric patients treated with APD: Data from EAPOS on the effects of glucose and Icodextrin prescription. Kidney Int 2005; 67: 1609–1615.Google Scholar
  71. 71.
    Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Ahn C, Kim MJ, Shin SK. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int 2005; 25 (3): 248–255.PubMedGoogle Scholar
  72. 72.
    Avram MM, Paik SK, Okanya D, Rajpal K. The natural history of diabetic nephropathy: unpredictable insulin requirements. A further clue. Clin Nephrol 1984; 21: 36–38.PubMedGoogle Scholar
  73. 73.
    Tzamaloukas AH. Interpreting glycosylated hemoglobin in diabetic patients on peritoneal dialysis. Adv Perit Dial 1996; 12: 170–175.Google Scholar
  74. 74.
    Riley SG, Chess J, Donovan KL, Williams JD. Spurious hyperglycaemia and icodextrin in peritoneal dialysis fluid. BMJ 2003; 327(7415): 608–609.PubMedGoogle Scholar
  75. 75.
    Duckworth WC. Insulin degradation: mechanisms, products and significance. Endocr Rev 1988; 9: 319–345.PubMedGoogle Scholar
  76. 76.
    Zingg W, Shirriff JM, Liebel B. Experimental routes of insulin administration. Perit Dial Bull 1982; 2: S24–S27.Google Scholar
  77. 77.
    Felig P, Wahren J. The liver as site of insulin and glucagon action in normal, diabetic and obese humans. Isr J Med Sci 1975; 11: 528.PubMedGoogle Scholar
  78. 78.
    Rubin J, Reed V, Adair C, Bower J, Klein E. Effect of intraperitoneal insulin on solute kinetics in CAPD: insulin kinetics in CAPD. Am J Med Sci 1986; 291: 81.PubMedGoogle Scholar
  79. 79.
    Rubin J, Bell AH, Andrews M, Jones Q, Planch A. Intraperitoneal insulin – a dose-response curve. Trans Am Soc Artif Intern Organs 1989; 35: 17–21.Google Scholar
  80. 80.
    Micossi P, Crostallo M, Librenti MC, et al. Free-insulin profiles after intraperitoneal, intramuscular and subcutaneous insulin administration. Diabet Care 1986; 9: 575–578.Google Scholar
  81. 81.
    Schade DS, Eaton RP. The peritoneum – a potential insulin delivery route for a mechanical pancreas. Diabet Care 1980; 3: 229.Google Scholar
  82. 82.
    Shapiro DJ, Blumenkrantz MJ, Levin SR, Coburn W. Absorption and action of insulin added to peritoneal dialysate in dogs. Nephron 1979; 23: 174.PubMedGoogle Scholar
  83. 83.
    Wideroe T, Smeby LC, Berg KJ, Jorstad S, Svartas IM. Intraperitoneal insulin absorption during intermittent and continuous peritoneal dialysis. Kidney Int 1983; 23: 22.PubMedGoogle Scholar
  84. 84.
    Paulsen EP, Courtney JW III, Duckworth WC. Insulin resistance caused by massive degradation of subcutaneous insulin. Diabetes 1979; 28: 640–645.PubMedGoogle Scholar
  85. 85.
    Schade DS, Duckworth WC. In search of the subcutaneous insulin degradation syndrome. N Engl J Med 1986; 315: 147–153.PubMedGoogle Scholar
  86. 86.
    Campbell IC, Kritz H, Najemnic C, Hagmueller G, Irsigler K. Treatment of Type I diabetic with subcutaneous insulin resistance by a totally implantable insulin infusion device (‘Infu-said’). Diabet Res 1984; 1: 83–88.Google Scholar
  87. 87.
    Wood DF, Goodchild K, Guillou P, Thomas DJ, Johnston DG. Management of ‘brittle diabetes' with a preprogrammable implanted insulin pump delivering intraperitoneal insulin. Br Med J 1990; 301: 1143–1144.Google Scholar
  88. 88.
    Albisser AM, Normura M, Greenberg GR, McPhedran NT. Metabolic control in diabetic dogs treated with pancreatic autotransplants and insulin pumps. Diabetes 1986; 35: 97.PubMedGoogle Scholar
  89. 89.
    Ishida T, Chap Z, Chou J, et al. Effects of portal and peripheral venous insulin infusion on glucose production and utilization in depancreatized conscious dogs. Diabetes 1984; 33: 984–990.PubMedGoogle Scholar
  90. 90.
    Kryshak EJ, Butler PD, Marsh C, et al. Pattern of postprandial carbohydrate metabolism and effects of portal and peripheral insulin delivery. Diabetes 1990; 39: 142.PubMedGoogle Scholar
  91. 91.
    Olefsky J. Pathogenesis of insulin resistance and hyperglycemia in non-insulin dependent diabetes mellitus. Am J Med 1990; 79: 1–7.Google Scholar
  92. 92.
    DeFronzo RA. Lilly lecture 1987. The triumvirate: B-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 1988; 3: 667–687.Google Scholar
  93. 93.
    Campbell PJ, Mandarino LJ, Gerich JE. Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin dependent diabetes mellitus. Metabolism 1988; 37: 15–21.PubMedGoogle Scholar
  94. 94.
    Duckworth WC, Saudek CD, Henry RR. Why intraperitoneal delivery of insulin with implantable pump in NIDDM? Diabetes 1992; 41: 657–661.PubMedGoogle Scholar
  95. 95.
    Cullen K, Steinhouse NS, Wearne KL, Welborn TA. Multiple regression analysis of risk factors for cardiovascular and cancer mortality in Busselton, Western Australia: thirteen year study. J Chronic Dis 1983; 36: 371–377.PubMedGoogle Scholar
  96. 96.
    Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Heen H. Coronary-heart disease risk and impaired glucose tolerance: the White-Hall study. Lancet 1983; 1: 1373–1376.Google Scholar
  97. 97.
    Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 1979; 2: 131–141.PubMedGoogle Scholar
  98. 98.
    Shafrir E, Bergman M, Felig P. The endocrine pancreas; diabetes mellitus. In: Felig P, Baxter JD, Broadus AE, Froahman LA, eds. Endocrinology and Metabolism. New York: McGraw-Hill, 1987, pp. 1043–1078.Google Scholar
  99. 99.
    Tamborlane WV, Sherwin RS, Genel M, Felig P. Reduction to normal of plasma glucose in juvenile diabetes by subcutaneous administration of insulin with a portable pump. N Engl J Med 1979; 300: 573.PubMedGoogle Scholar
  100. 100.
    Selam JL, Kashyap M, Alberti KGM, et al. Comparison of intraperitoneal and subcutaneous insulin administration on lipids apolipoproteins, fuel metabolites, and hormones in Type I diabetes mellitus. Metabolism 1989; 38: 908–912.PubMedGoogle Scholar
  101. 101.
    Kashyap ML, Gupta AK, Selam JL, et al. Improvement in reverse cholesterol transport associated with programmable implantable intraperitoneal insulin delivery. Diabetes 1991; 40 (suppl. 1): 3A (abstract).Google Scholar
  102. 102.
    Ruotolo G, Micossi P, Galimberti G, et al. Effects of intraperitoneal versus subcutaneous insulin administration on lipoprotein metabolism in Type I diabetes. Metabolism 1990; 38: 598.Google Scholar
  103. 103.
    Bagdade JD, Kelley DE, Henry RR, Eckel RH, Ritter MC, Effects of multiple daily insulin injections and interaperitoneal insulin therapy on cholesteryl ester transfer and lipoprotein lipase activities in NIDDM Diabetes. 1997; 46 (3): 414–420.Google Scholar
  104. 104.
    Colettte C, Pares-Herbute N, Monnier L, Swlam JL, Thomas N, Mirouze J. Effect of different insulin administration modalities on vitamin D metabolism of IDDM patients. Horm Metab Res 1989; 21: 37–41.Google Scholar
  105. 105.
    Saudek CD, Salem JL, Pitt HA, et al. A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med 1989; 321: 574–579.PubMedGoogle Scholar
  106. 106.
    Schmitz O. Insulin-mediated glucose uptake in nondialyzed and dialyzed uremic insulin-dependent diabetic subjects. Diabetes 1985; 34: 1152–1159.PubMedGoogle Scholar
  107. 107.
    Grefberg N, Danielson BG, Nilsson P, Berne C. Decreasing insulin requirements in CAPD patients given intraperitoneal insulin. J Diabet Complications 1987; 1: 16–19.PubMedGoogle Scholar
  108. 108.
    Scalamogna A, Castelnova C, Crepaldi M, et al. Incidence of peritonitis in diabetic patients on CAPD: intraperitoneal vs. subcutaneous insulin therapy. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in CAPD. Toronto: University of Toronto Press. 1987, pp. 166–170.Google Scholar
  109. 109.
    Quellhorst E. Insulin therapy during peritoneal dialysis: Pros and Cons of various forms of administration. J Am Soc Nephrol 2002; 13: S92–S96.PubMedGoogle Scholar
  110. 110.
    Wanless IR, Bargman JM, Oreopoulos DG, Vas SI. Subcapsular steatonecrosis in response to peritoneal insulin delivery: a clue to the pathogenesis of steatonecrosis in obesity. Mod Pathol 1989; 2: 69–74.PubMedGoogle Scholar
  111. 111.
    Harrison NA, Rainford DJ. Intraperitoneal insulin and the malignant omentum syndrome. Nephrol Dial Transplant 1988; 3: 103.PubMedGoogle Scholar
  112. 112.
    Rottembourg J. Peritoneal dialysis in diabetics. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1988, pp. 365–379.Google Scholar
  113. 113.
    Khanna R, Oreopoulos DG. CAPD in patients with diabetes mellitus. In: Gokal R, ed. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986, pp. 291–305.Google Scholar
  114. 114.
    Carta Q, Monge L, Triolo G, et al. Continuous insulin infusion in the management of uremic diabetic patients on dialysis: clinical experience with subcutaneous and intraperitoneal delivery. Diabetic Nephropathy 1987; 4: 83–87.Google Scholar
  115. 115.
    Groop LC, van Bonsdorff MC. Intraperitoneal insulin administration does not promote insulin antibody production in insulin dependent patients on dialysis. Diabetic Nephropathy 1985; 4: 80–82.Google Scholar
  116. 116.
    Henderson IS, Patterson KR, Leung ACT. Decreased intraperitoneal insulin requirements during peritonitis on continuous ambulatory peritoneal dialysis. Br Med J 1985; 290: 474.Google Scholar
  117. 117.
    Mactier RA, Moore H, Khanna R, Shah J. Effect of peritonitis on insulin and glucose absorption during peritoneal dialysis in diabetic rats. Nephron 1990; 54: 240–244.PubMedGoogle Scholar
  118. 118.
    Rottembourg J, El Shahat Y, Agrafiotis A, et al. Continuous ambulatory peritoneal dialysis in insulin dependent diabetics: a 40 months experience. Kidney Int 1983; 23: 40.PubMedGoogle Scholar
  119. 119.
    Wong TY, Szeto CC, Chow KM, Leung CB, Lam CW, Li PK. Rosiglitazone reduces insulin requirement and C-reactive protein levels in type 2 diabetic patients receiving peritoneal dialysis. Am J Kidney Dis 2005; 46(4): 713–719.PubMedGoogle Scholar
  120. 120.
    Nolph KD, Sorkin M, Rubin J, et al. Continuous ambulatory peritoneal dialysis: Three-year experience at one center. Ann Intern Med 1983; 92: 609–613.Google Scholar
  121. 121.
    Young MA, Nolph KD, Dutton S, Prowant BF. Anti-hypertensive drug requirements in continuous ambulatory peritoneal dialysis. Perit Dial Bull 1984; 4: 85–88.Google Scholar
  122. 122.
    Glasson PH, Favre H, Valloton MB. Response of blood pressure and the renin–angiotensin–aldosterone system to chronic ambulatory peritoneal dialysis in hypertensive end-stage renal failure. Clin Sci 1982; 63: S207–S209.Google Scholar
  123. 123.
    Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis: physiologic mechanisms and clinical implications. Ann Intern Med 1969; 70: 931–941.PubMedGoogle Scholar
  124. 124.
    Nolph KD, Sorkin M, Moore H. Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. ASAIO Trans 1980; 6: 334–337.Google Scholar
  125. 125.
    Leenen FHH, Shah P, Boer WH, Khanna R, Oreopoulos DG. Hypotension on CAPD: an approach to treatment. Perit Dial Bull 1983; 3: S33–S35.Google Scholar
  126. 126.
    Rottembourg J, Issad B, Poignet JL et al. Residual renal function and control of blood glucose levels in insulin-dependent diabetic patients treated by CAPD. In: Keen H, Legrain M, eds. Prevention and Treatment of Diabetic Nephropathy. Boston: MTP, 1983, pp. 339–359.Google Scholar
  127. 127.
    Cancarini GC, Brunori G, Camerini C, Brasa S, Manili L, Maiorca R. Renal function recovery and maintenance of residual diuresis in CAPD and hemodialysis. Perit Dial Bull 1986; 6: 77–79.Google Scholar
  128. 128.
    Lysaght M, Vonesh E, Ibels L, et al. Decline of residual renal function in hemodialysis and CAPD patients; a risk adjusted growth function analysis. Nephrol Dial Transplant 1989; 4: 499 (abstract).Google Scholar
  129. 129.
    Lysaght M, Pollock C, Schindaglm K, Ibeles L, Farrell P. The relevance of urea kinetic modeling to CAPD. ASAIO Trans 1988; 34: 84.Google Scholar
  130. 130.
    Slingeneyer A, Mion C. Five year follow-up of 155 patients treated by CaPD in European–French speaking countries. Perit Dial Int 1989; 9 (suppl. 1): 176 (abstract).Google Scholar
  131. 131.
    Rottembourg J, Issad B, Allouache M, Jacobs C. Recovery of renal function in patients treated by CAPD. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: University of Toronto Press, 1989, pp. 63–66.Google Scholar
  132. 132.
    Michael C, Bindi P, Kareche M, Mignon F. Renal function on recovery on chronic dialysis: what is best, CAPD or hemodialysis? Nephrol Dial Transplant 1989; 4: 499–500 (abstract).Google Scholar
  133. 133.
    Nunan To, Wing AJ, Brunner FB, Selwood NH. Native kidneys sometimes recover after prolonged dialysis and transplantation. In: Giovanetti C, ed. Proceedings of the V International Capri Conference on Uremia. Capri, 1986, pp. 132–149.Google Scholar
  134. 134.
    Nolph KD. Is residual renal function preserved better with CAPD than hemodialysis? AKF Nephrol Lett 1990; 7: 1–4.Google Scholar
  135. 135.
    Shekkarie MA, Port FK, Wolfe RA, et al. Recovery from end-stage renal disease. Am J Kidney Dis 1990; 15: 61–65.Google Scholar
  136. 136.
    Mourad G, Mimram A, Mion C. Recovery of renal function in patients with accelerated malignant nephrosclerosis on maintenance dialysis with management of blood pressure by captopril. Nephron 1985; 41: 166–169.PubMedGoogle Scholar
  137. 137.
    Wauters JP, Brunner HR. Discontinuation of chronic hemodialysis after control of arterial hypertension: long term follow-up. Proc Eur Dial Transplant Assoc 1982; 19: 182–187.Google Scholar
  138. 138.
    Misra M, Vonesh V, VanStone JC, Moore HL. Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR. A comparative analysis of decline of GFR on dialysis. Kidney Int.2001;59 (2): 754–776.PubMedGoogle Scholar
  139. 139.
    Herbelin A, Nguyen AT, Zingraft J, Urena P, Descamps-Latscha B. Influence of uremia and hemodialysis on circulating interleukin-1 and tumor necrosis factor alpha. Kidney Int 1990; 37: 116–125.PubMedGoogle Scholar
  140. 140.
    Cotran RS, Pober JS. Effects of cytokines on vascular endo-thelium; their role in vascular and immune injury. Kidney Int 1989; 35: 969–975.PubMedGoogle Scholar
  141. 141.
    Shah AH. Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int 1989; 35: 1093–1106.PubMedGoogle Scholar
  142. 142.
    Van Olden RW, Krediet RT, Struijk DG, Arisz L. Measurement of residual renal function in patients treated with continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 1995; 7: 745–750.Google Scholar
  143. 143.
    Rottembourg J, Bellio P, Maiga K, Remaoun M, Rousselie F, Legrain M. Visual function, blood pressure and blood glucose in diabetic patients undergoing continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 1984; 21: 330–334.Google Scholar
  144. 144.
    Kohner E, Chahal P. Retinopathy in diabetic nephropathy. In: Keen H, Legrain M, eds. Prevention and Treatment of Diabetic Nephropathy. Lancaster: MTP, 1983, pp. 191–196.Google Scholar
  145. 145.
    Diaz-Buxo JA, Burgess WP, Greenman M, Chandler JT, Farmer CD, Walker PJ. Visual function in diabetic patients undergoing dialysis: comparison of peritoneal and hemodialysis. Int J Artif Organs 1984; 7: 257–262.PubMedGoogle Scholar
  146. 146.
    Zimmerman SW, Johnson CA, O’Brien M. Survival of diabetic patients on continuous ambulatory peritoneal dialysis for over five years. Perit Dial Bull 1987; 7: 26.Google Scholar
  147. 147.
    Dombros N, Oren A, Marliss EB, et al. Plasma amino acids profiles and amino acid losses in patients undergoing CAPD. Perit Dial Bull 1982; 2: 32–37.Google Scholar
  148. 148.
    Norbeck H. Lipid abnormalities in continuous ambulatory peritoneal dialysis patients. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1979, pp. 298–301.Google Scholar
  149. 149.
    Khanna R, Brechenridge C, Roncari D, Digenis G, Oreopoulos DG. Lipid abnormalities in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Bull 1983; 3: 13–16.Google Scholar
  150. 150.
    Gokal R, Ramos JM, McGurk JG, Ward MK, Kerr DNS. Hyperlipidemia in a patient on continuous ambulatory peritoneal dialysis. In: Gahl G, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 430–433.Google Scholar
  151. 151.
    Moncrief JW, Pyle WK, Simon P, Popovich RP. Hypertriglyceridemia, diabetes mellitus and insulin administration in patient undergoing continuous ambulatory peritoneal dialysis. In: Moncrief J, Popovich R, eds. CAPD Update. New York: Masson, 1981, pp. 143–165.Google Scholar
  152. 152.
    Sorge F, Castro LA, Nagel A Kessel M. Serum glucose, insulin growth hormone, free fatty acids and lipids responses to high carbohydrate and to high fat isocaloric diets in patients with chronic, non-nephrotic renal failure. Horm Metab Res 1975; 7: 118–127.Google Scholar
  153. 153.
    Sanfelippo ML, Swenson RS, Reavan GM. Response of plasma triglycerides to dietary change in patients on hemodialysis. Kidney Int 1978; 14: 180–186.PubMedGoogle Scholar
  154. 154.
    Cattran DC, Steiner GS, Fenton SSA, Ampil M. Dialysis hyperlipemia: response to dietary manipulations. Clin Nephrol 1980; 13: 177–182.PubMedGoogle Scholar
  155. 155.
    Ramos JM, Heaton A, McGurk GJ, Wark MK, Kerr DNS. Sequential changes in serum lipids and their subfractions in patients receiving continuous ambulatory peritoneal dialysis. Nephron 1983; 353: 20–23.Google Scholar
  156. 156.
    Nolph KD, Ryan KL, Prowant B, Twardowski Z. A cross sectional assessment of serum vitamin D and triglyceride concentrations in a CAPD population. Perit Dial Bull 1984; 4: 232–237.Google Scholar
  157. 157.
    Lindholm B, Norbeck HE. Serum lipids and lipoproteins during continuous ambulatory peritoneal dialysis. Acta Med Scand 1986; 220: 143–151.PubMedGoogle Scholar
  158. 158.
    Heaton A, Johnston DG, Haigh JW, Ward MK, Alberti KGMM, Kerr DNS. Twenty-four hour hormonal and metabolic profiles in uraemic patients before and during treatment with continuous ambulatory peritoneal dialysis. Clin Sci 1985; 69: 449–457.PubMedGoogle Scholar
  159. 159.
    Keusch G, Bammatter F, Mordasini R, Binswanger U. Serum lipoprotein concentrations during continuous ambulatory peritoneal dialysis (CAPD). In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 427–429.Google Scholar
  160. 160.
    Lindholm B, Karlander SG, Norbeck HE, Fürst P, Bergstrom J. Carbohydrate and lipid metabolism in CAPD patients. In: Atkins R, Thomson N, Farrell P, eds. Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1981, pp. 198–210.Google Scholar
  161. 161.
    Lindholm B, Alvestrand A, Fürst P, et al. Metabolic effects of continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 1980; 17: 283–289.PubMedGoogle Scholar
  162. 162.
    Lindholm B, Karlander SG, Norbeck HE, Bergström J. Glucose and lipid metabolism in peritoneal dialysis. In: La Greca G, Biasoli S, Ronco C, eds. Peritoneal Dialysis. Milano: Whichtig Editore, 1982, pp. 219–230.Google Scholar
  163. 163.
    Kagan A, Barkhayim Y, Schafer Z, Fainaru, M. Low level of plasma HDL in CAPD patients may be due to HDL loss in dialysate. Perit Dial Int 1988; A79 (abstract).Google Scholar
  164. 164.
    Roncari DAK, Breckenridge WC, Khanna R, Oreopoulos DG. Rise in high-density lipoprotein-cholesterol in some patients treated with CAPD. Perit Dial Bull 1987; 1: 136–137.Google Scholar
  165. 165.
    Breckenridge WC, Roncari DAK, Khanna R, Oreopoulos DG. The influence of continuous ambulatory peritoneal dialysis on plasma lipoproteins. Atherosclerosis 1982; 45: 249–258.PubMedGoogle Scholar
  166. 166.
    Tsukamoto Y, Okubo M, Yoneda T, Marumo F, Nakamura H. Effects of a polyunsaturated fatty acid-rich diet on serum lipids in patients with chronic renal failure. Nephron 1982; 31: 236–241.PubMedGoogle Scholar
  167. 167.
    Vas SI. Peritonitis. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1989, pp. 261–288.Google Scholar
  168. 168.
    Nolph KD, Cutler SJ, Steinberg SM, Novak JW. Special studies from the NIH USA CAPD Registry. Perit Dial Bull 1986; 6: 28–35.Google Scholar
  169. 169.
    Lye WC, Leong SO, van der Straaten JC, Lee EJC. A prospective study of peritoneal dialysis related infections in CAPD patients with diabetes mellitus. Adv Perit Dial 1993; 9: 195–197.PubMedGoogle Scholar
  170. 170.
    Rottembourg J, Brouard R, Issad B, Allouache M, Jacobs C. Prospective randomized study about Y connectors in CAPD patients. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin, Inc., 1987, pp. 107–113.Google Scholar
  171. 171.
    Madden MA, Zimmerman SW, Simpson DP. CAPD in diabetes mellitus – the risks and benefits of intraperitoneal insulin. Am J Nephrol 1982; 2: 133 (abstract).PubMedGoogle Scholar
  172. 172.
    Wing AF, Broyer M, Brunner FP, et al. Combined report on regular dialysis and transplantation in Europe 1982. Proc Eur Dial Transplant Assoc – ERA 1983; 20: 5–75.Google Scholar
  173. 173.
    Williams C and the University of Toronto Collaborative Dialysis Group. CAPD in Toronto – an overview. Perit Dial Bull 1983; 35: 2.Google Scholar
  174. 174.
    Bloembergen WE, Port FK, Mauger EA, et al. A comparison of mortality between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol 1995; 6: 177–183.PubMedGoogle Scholar
  175. 175.
    Bloembergen WE, Port FK, Mauger EA, et al. A comparison of cause of death between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol 1995; 6: 184–191.PubMedGoogle Scholar
  176. 176.
    Port FK, Turenne MN, et al. Continuous ambulatory peritoneal dialysis and hemodialysis: comparison of patient mortality with adjustment for comorbid conditions. Kidney Int 1994; 45: 1163–1169.PubMedGoogle Scholar
  177. 177.
    Keshaviah P, Ma J, Thorpe K, Churchill D, Collins A. Comparison of 2 year survival on hemodialysis (HD) and peritoneal dialysis (PD) with dose of dialysis matched using the peak concentration hypothesis. J Am Soc Nephrol 1995; 6: 540 (abstract).Google Scholar
  178. 178.
    Marcelli D, Spotti D, Conte F, et al. Survival of diabetic patients on peritoneal dialysis or hemodialysis. Perit Dial Int 1996; 16 (suppl. 1): S283–S287 (abstract).PubMedGoogle Scholar
  179. 179.
    Fenton SSA, Schaubel DE, Desmeules M, et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 1997; 30: 334–342.PubMedGoogle Scholar
  180. 180.
    US Renal Data System. USRDS 1991 Annual Data Report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, August 1991.Google Scholar
  181. 181.
    Nelson CB, Port FK, Wolfe RA, Guire KE. Dialysis patient survival: evaluation of CAPD vs. HD using 3 techniques. Perit Dial Int 1992; 12 (suppl. 1): 144 (abstract).Google Scholar
  182. 182.
    Vonesh EF, Snyder JJ, Foley RN, Collins AJ. Mortality studies comparing peritoneal dialysis and hemodialysis: what do they tell us? Kidney Int suppl 2006; 103: S3–S11.PubMedGoogle Scholar
  183. 183.
    Port FK, Held PJ, Nolph KD, Turenne MN, Wolfe RA. Risk of peritonitis and technique failure by CAPD technique: a national study. Kidney Int 1992; 42: 967–974.PubMedGoogle Scholar
  184. 184.
    Keshaviah P, Nolph KD, Prowant BF, et al. Defining adequacy of CAPD with urea kinetics. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: University of Toronto Press, 1990, pp. 173–177.Google Scholar
  185. 185.
    Faller B, Marichal JD. Loss of ultrafiltration in CAPD. Clinical Data. In: Gahl G, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 227–232.Google Scholar
  186. 186.
    Slingeneyer A, Mion C, Mourad G, Canaud B, Faller B, Beraud JJ. Progressive sclerosing peritonitis: a late and severe complications of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs, 1983; 29: 633.PubMedGoogle Scholar
  187. 187.
    Rottembourg J, Brouard R, Issad B, Allouache M, Ghali B, Boudjemaa A. Role of acetate in loss of ultrafiltration during CAPD. In: Berlyne GM, Giovannetti S, eds. Contribution to Nephrology. Basel: Karger, 1987, p. 197.Google Scholar
  188. 188.
    Feriani M. Buffers: bicarbonate, lactate and pyruvate. Kidney Int 1996; 56: S75–80.Google Scholar
  189. 189.
    Di Paulo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of microangiopathy. Perit Dial Bull 1985; 9: 41–45.Google Scholar
  190. 190.
    Hoff CM. In vitro biocompatibility performance of physioneal. Kidney Int Suppl 2003; 88: S57–S74.Google Scholar
  191. 191.
    Witowski J, Jorres A, Korybalska K, et al. Glucose degradation products in peritoneal dialysis fluids: do they harm? Kidney Int Suppl 2003; 84: S148–S151.Google Scholar
  192. 192.
    Catalan MP, Santa Maria B, Reyero A, et al. 3, 4-di-deoxyglucosone-3-ene promotes leucocyte apoptosis. Kidney Int 2005; 68: 1303–1311.PubMedGoogle Scholar
  193. 193.
    Welten AG, Schalwijk CG, ter Wee PM, et al. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end products (AGEs) and a proinflammatory response. Perit Dial Int 2003; 23: 213–221.PubMedGoogle Scholar
  194. 194.
    Nakayama M, Kawaguchi Y, Yamada K, et al. Immunohistochemical detection of advanced glycosylation end products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 1997; 51: 182–186.PubMedGoogle Scholar
  195. 195.
    Witowski J, Korybalska K, Ksiazek K, et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol Dial Transplant 2004; 19: 917–924.PubMedGoogle Scholar
  196. 196.
    Morgan LW, Wieslander A, Davies M, et al. Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. Kidney Int 2003; 64: 1854–1866.PubMedGoogle Scholar
  197. 197.
    Martikainen TA, Teppo AM, Gronhagen-Riska C, et al. Glucose free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int 2005; 25: 453–460.PubMedGoogle Scholar
  198. 198.
    Fusshoeller A, Plail M, Grabensee B, et al. Biocompatibility pattern of a bicarbonate-lactate buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant 2004; 19: 2101–2106.PubMedGoogle Scholar
  199. 199.
    Davis SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a randomized double blind controlled trial. J Am Soc Nephrol 2003; 14: 2338–2344.Google Scholar
  200. 200.
    Asghar RB, Diskin AM, Spanel P, et al. Influence of convection on the diffusive transport and sieving of water and small solutes across the peritoneal membrane. J Am Soc Nephrol 2005; 16: 437–443.PubMedGoogle Scholar
  201. 201.
    Bredie SJ, Bosch FH, Demacker PN, et al. Effects of peritoneal dialysis with an overnight Icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int 2001; 21: 275–281.PubMedGoogle Scholar
  202. 202.
    Nolph KD, Stolta M, Maher JF. Altered peritoneal permeability in patients with systemic vasculitis. Ann Intern Med 1973; 78: 891.PubMedGoogle Scholar
  203. 203.
    Twardowski ZJ, Nolph KD, Khanna R, et al. Peritoneal equilibration test. Perit Dial Bull 1987; 7: 138.Google Scholar
  204. 204.
    Hallett MD, Kush RD, Lysaght MJ, Farrell PC. The stability and kinetics of peritoneal mass transfer. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht; Kluwer, 1989, pp. 380–388.Google Scholar
  205. 205.
    Struijk DG, Krediet RT, Koomen GCM, et al. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 213–220.PubMedGoogle Scholar
  206. 206.
    Gilmore J, Wu G, Khanna R, Oreopoulos DG. Long term CAPD. Perit Dial Bull 1985; 5: 112.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Missouri School of MedicineMissouri

Personalised recommendations