Skip to main content

Adaptation to Estradiol Deprivation Causes Up-Regulation of Growth Factor Pathways and Hypersensitivity to Estradiol in Breast Cancer Cells

  • Chapter
Innovative Endocrinology of Cancer

Abstract

Deprivation of estrogen causes breast tumors in women to adapt and develop enhanced sensitivity to this steroid. Accordingly, women relapsing after treatment with oophorectomy, which substantially lowers estradiol for a prolonged period, respond secondarily to aromatase inhibitors with tumor regression. We have utilized in vitro and in vivo model systems to examine the biologic processes whereby Long Term Estradiol Deprivation (LTED) causes cells to adapts and develop hypersensitivity to estradiol. Several mechanisms are associated with this response including up-regulation of ERα and the MAP kinase, PI-3-kinase and mTOR growth factor pathways. ERα is 4–10 fold up-regulated as a result of demethylation of its C promoter, This nuclear receptor then co-opts a classical growth factor pathway using SHC, Grb-2 and Sos. This induces rapid nongenomic effects which are enhanced in LTED cells.

The molecules involved in the nongenomic signaling process have been identified. Estradiol binds to cell membrance-associated ERα which physically associates with the adaptor protein SHC and induces its phosphorylation. In turn, SHC binds Grb-2 and Sos which results in the rapid activation of MAP kinase. These nongenomic effects of estradiol produce biologic effects as evidenced by Elk-1 activation and by morphologic changes in cell membrances. Additional effects include activation of the PI-3-kinase and mTOR pathways through estradiol-induced binding of ERα to the IGF-1 and EGF receptors.

A major question is how ERα locates in the plasma membrance since it does not contain an inherent membrance localization signal. We have provided evidence that the IGF-1 receptor serves as an anchor for ERα in the plasma membrane. Estradiol causes phosphorylation of the adaptor protein, SHC and the IGF-1 receptor itself. SHC, after binding to ERα, serves as the “glue” which tethers ERα to SHC binding sites on the activated IFG-1 receptors. Use of siRNA methodology to knock down SHC allows the conclusion that SHC is needed for ERα to localize in the plasma membrane.

In order to abrogate growth factor induced hypersensitivity, we have utilized a drug, farnesylthiosalicylic acid, which blocks the binding of GTP-Ras to its membrance acceptor protein, galectin 1 and reduces the activation of MAP kinase. We have shown that this drug is a potent inhibitor of mTOR and this provides the major means for inhibition of cell proliferation. The concept of “adaptive hypersensitivity” and the mechanisms responsible for this phenomenon have important clinical implications. The efficacy of aromatase inhibitors in patients relapsing on tamoxifen could be explained by this mechanism and inhibitors of growth factor pathways should reverse the hypersensitivity phenomenon and result in prolongation of the efficacy of hormonal therapy for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Santen RJ, Manni A, Harvey H et al. Endocrine treatment of breast cancer in women. Endocr Rev 1990; 11(2):221–265.

    Article  CAS  PubMed  Google Scholar 

  2. McMahon LP, Yue W, Santen RJ et al. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. J Mol Endocrinol 2005; 19(1):175–183.

    CAS  Google Scholar 

  3. Santen RJ, Song RX, Zhang Z et al. Long-term estradiol deprivation in breast cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr Relat Cancer 2005; 12(Suppl. 1): S61–73.

    Article  CAS  PubMed  Google Scholar 

  4. Shim WS, DiRenzo J, DeCaprio JA et al. Segregation of steroid receptor coactivator-1 from steroid receptors in mammary epithelium. Proc Natl Acad Sci USA 1999; 96(1):208–13.

    Article  CAS  PubMed  Google Scholar 

  5. Shim WS, Conaway M, Masamura S et al. Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology 2000; 141(1):396–405.

    Article  CAS  PubMed  Google Scholar 

  6. Yue W, Wang J, Li Y et al. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int J Cancer 2005; 117(5):746–754.

    Article  CAS  PubMed  Google Scholar 

  7. Yue W, Wang JP, Conaway M et al. Activation of the MAPK pathway enhances sensitivity of MCF-7 breast cancer cells to the mitogenic effect of estradiol. Endocrinology 2002; 143(9):3221–3229.

    Article  CAS  PubMed  Google Scholar 

  8. Yue W, Wang JP, Conaway MR et al. Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. Journal of Steroid Biochemistry_& Molecular Biology 2003; 86(3–5):265–74.

    Article  CAS  Google Scholar 

  9. Song RX. Membrane-initiated steroid signaling action of estrogen and breast cancer. Seminars in Reproductive Medicine 2007; 25(3):187–197.

    Article  CAS  PubMed  Google Scholar 

  10. Song RX, Fan P, Yue W, Chen Y, Santen RJ. Role of receptor complexes in the extranuclear actions of estrogen receptor alpha in breast cancer. Endocrine-Related Cancer 2006; 13 (Suppl 1):S3–S13.

    Article  CAS  PubMed  Google Scholar 

  11. Jeng MH, Yue W, Eischeid A et al. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res Treat 2000; 62(3):167–175.

    Article  CAS  PubMed  Google Scholar 

  12. Masamura S, Santner SJ, Heitjan DF et al. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab 1995; 80(10):2918–2925.

    Article  CAS  PubMed  Google Scholar 

  13. Jeng MH, Shupnik MA, Bender TP et al. Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology 1998; 139(10):4164–74.

    Article  CAS  PubMed  Google Scholar 

  14. Sogon T, Masamura S, Hayashi S-I et al. J Steroid Biochem Mol Biol 2007; 105(1–3):106–14.

    Article  CAS  PubMed  Google Scholar 

  15. Pelicci G, Lanfrancone L, Salcini AE et al. Constitutive phosphorylation of SHC proteins in human tumors. Oncogene 1995; 11(5):899–907.

    CAS  PubMed  Google Scholar 

  16. Pelicci G, Dente L, De Giuseppe A et al. A family of SHC related proteins with conserved PTB, CH1 and SH2 regions. Oncogene 1996; 13(3):633–641.

    CAS  PubMed  Google Scholar 

  17. Yue W, Wang JP, Li Y et al. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int J Cancer 2005; 117(5):746–54.

    Article  CAS  PubMed  Google Scholar 

  18. Migliaccio A, Di Domenico M, Castoria G et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996; 15(6):1292–1300.

    CAS  PubMed  Google Scholar 

  19. Kelly MJ, Lagrange AH, Wagner EJ et al. Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 1999; 64(1–2):64–75.

    Article  CAS  PubMed  Google Scholar 

  20. Valverde MA, Rojas P, Amigo J et al. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit [see comments]. Science 1999; 285(5435):1929–1931.

    Article  CAS  PubMed  Google Scholar 

  21. Song RX, McPherson RA, Adam L et al. Linkage of rapid estrogen action to MAPK activation by ERalpha-SHC association and SHC pathway activation. J Mol Endocrinol 2002; 16(1):116–127.

    Article  CAS  Google Scholar 

  22. Dikic I, Batzer AG, Blaikie P et al. SHC binding to nerve growth factor receptor is mediated by the phosphotyrosine interaction domain. J Biol Chem 1995; 270(25):15125–15129.

    Article  CAS  PubMed  Google Scholar 

  23. Boney CM, Gruppuso PA, Faris RA et al. The critical role of SHC in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes. J Mol Endocrinol 2000; 14(6):805–813.

    Article  CAS  Google Scholar 

  24. Collins P, Webb C. Estrogen hits the surface. [see comments]. Nature Medicine 1999; 5(10):1130–1131.

    Article  CAS  PubMed  Google Scholar 

  25. Watson CS, Campbell CH, Gametchu B. Membrane oestrogen receptors on rat pituitary tumour cells: immuno-identification and responses to oestradiol and xenoestrogens. [Review] [45 refs]. Exp Physiol 1999; 84(6):1013–1022.

    Article  CAS  PubMed  Google Scholar 

  26. Watson CS, Norfleet AM, Pappas TC et al. Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-alpha. Steroids 1999; 64(1–2):5–13.

    Article  CAS  PubMed  Google Scholar 

  27. Duan R, Xie W, Burghardt RC et al. Estrogen receptor-mediated activation of the serum response element in MCF-7 cells through MAPK-dependent phosphorylation of Elk-1. J Biol Chem 2001; 276(15):11590–11598.

    Article  CAS  PubMed  Google Scholar 

  28. Roberson MS, Misra-Press A, Laurance ME et al. A role for mitogen-activated protein kinase in mediating activation of the glycoprotein hormone alpha-subunit promoter by gonadotropin-releasing hormone. Mol Cell Biol 1995; 15(7):3531–3539.

    CAS  PubMed  Google Scholar 

  29. Song RX, Barnes CJ, Zhang Z et al. The role of SHC and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA 2004; 101(7):2076–81.

    Article  CAS  PubMed  Google Scholar 

  30. Song RX, Santen RJ. Role of IFG-1R in mediating nongenomic effects of estrogen receptor alpha. Paper presented at: The Endocrine Society’s 85th Annual Meeting (USA). Philadelphia, 2003.

    Google Scholar 

  31. Pedram A, Razandi M, Sainson RC et al. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 2007; 282(31):22278–88.

    Article  CAS  PubMed  Google Scholar 

  32. Haklai R, Weisz MG, Elad G et al. Dislodgment and accelerated degradation of Ras. Biochemistry 1998; 37(5):1306–14.

    Article  CAS  PubMed  Google Scholar 

  33. Harris TE, Lawrence JC Jr. TOR signaling. [Review] [221 refs]. Science’s Stke [Electronic Resource]: Sci STKE 2003; (212):ref 15.

    Google Scholar 

  34. Lawrence JC Jr, Brunn GJ. Insulin signaling and the control of PHAS-I phosphorylation. [Review] [102 refs]. Prog Mol Subcell Biol 2001; 26:1–31.

    CAS  PubMed  Google Scholar 

  35. Brunn GJ, Hudson CC, Sekulic A et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277(5322):99–101.

    Article  CAS  PubMed  Google Scholar 

  36. Berstein L, Zheng H, Yue W et al. New approaches to the understanding of tamoxifen action and resistance. Endocr Relat Cancer. 2003; 10(2):267–77.

    Article  CAS  PubMed  Google Scholar 

  37. Fan P, Wang J, Santen RJ et al. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res 2007; 67(3):1352–1360.

    Article  CAS  PubMed  Google Scholar 

  38. Osborne CK, Hamilton B, Titus G et al. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res 1980; 40(7):2361–2366.

    CAS  PubMed  Google Scholar 

  39. Osborne CK, Fuqua SA. Mechanisms of Tamoxifen Resistance. Breast Cancer Res Treat 1994; 32:49–55.

    Article  CAS  PubMed  Google Scholar 

  40. Hiscox S, Morgan L, Green TP et al. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 2006; 97(3):263–274.

    Article  CAS  PubMed  Google Scholar 

  41. Hiscox S, Morgan L, Barrow D et al. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (‘Iressa’, ZD1839). Clin Exp Metastasis 2004; 21(3):201–212.

    Article  CAS  PubMed  Google Scholar 

  42. Schiff R, Massarweh SA, Shou J et al. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. [Review] [97 refs]. Cancer Chemother Pharmacol 2005; 56(Suppl 1):10–20.

    Article  PubMed  Google Scholar 

  43. Mackey JR, Kaufman B, Clemens M et al. Trastuzumab prolongs progression-free survival in hormone dependent and HER2-positive metastatic breast cancer. Breast Cancer Res Treat 2006: 100:(Suppl 1): S5, Ab 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Santen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Santen, R.J. et al. (2008). Adaptation to Estradiol Deprivation Causes Up-Regulation of Growth Factor Pathways and Hypersensitivity to Estradiol in Breast Cancer Cells. In: Berstein, L.M., Santen, R.J. (eds) Innovative Endocrinology of Cancer. Advances in Experimental Medicine and Biology, vol 630. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78818-0_2

Download citation

Publish with us

Policies and ethics