Skip to main content

Non-Linear Control

  • Chapter

Part of the Mechanical Engineering Series book series (MES)

Keywords

  • Large Step
  • Friction Torque
  • Motor Torque
  • Applied Torque
  • Wheel Velocity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-78793-0_11
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-78793-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig. 11.15
Fig. 11.16
Fig. 11.17
Fig. 11.18
Fig. 11.19
Fig. 11.20
Fig. 11.21
Fig. 11.22
Fig. 11.23
Fig. 11.24
Fig. 11.25

References

  1. Armstrong-Helouvry B, Dupont P, Canudas de Wit C. (1994). Friction in Servo Machines: Analysis and Control Methods. Appl. Mechanics Rev., 47(7): 275–305.

    CrossRef  Google Scholar 

  2. Armstrong-Helouvry B, Dupont, P, Canudas de Wit, C. (1994). A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatica, 30(7): 1083–1138.

    CrossRef  MATH  Google Scholar 

  3. Bliman PAJ. (1992). Mathematical Study of the Dahl’s Friction Model. European J. Mechanics, A/Solids, 11(6): 835–848.

    MATH  MathSciNet  Google Scholar 

  4. Boddeke FR, VanVliet LJ, Young IT. (1997). Calibration of the Automated z-Axis of a Microscope Using Focus Function. Journal of Microscopy, 186 (3).

    Google Scholar 

  5. Bridges MM, Dawson DM, Hu J. (1996). Adaptive Control for a Class of Direct Drive Robot Manipulators. Int. J. Adaptive Control and Signal Processing, 10(4).

    Google Scholar 

  6. Cai L, Song G. (1994). Joint Stick-Slip Friction Compensation of Robot Manipulators by Using Smooth Robust Controllers. J. Robotic Systems, 11(6): 451-469.

    CrossRef  MATH  Google Scholar 

  7. Canudas de Wit C, Olsson H, Astrom KJ. (1995). A New Model for Control of Systems with Friction. IEEE Trans. on Aut. Control, 40(3): 419–425.

    CrossRef  MATH  Google Scholar 

  8. Dahl PR. (1976). Solid Friction Damping of Mechanical Vibrations. AIAA J., 14(12): 1675–1682.

    CrossRef  Google Scholar 

  9. Dhaouadi R, Kubo K, Tobise MI. (1994). Analysis and Compensation of Speed Drive Systems with Torsional Loads. IEEE Trans. Industry Applications, 30(3): 760–766.

    Google Scholar 

  10. Dupont PE. (1994). Avoiding Stick-Slip Through PD Control. IEEE Trans. Aut. Control, 39(5): 1094–1097.

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Dupont PE, Dunlap EP. (1995). Friction Modeling and PD Compensation at Very Low Velocities. J. Dynamic System, Measurement, and Control, 117(1): 8–14.

    CrossRef  Google Scholar 

  12. Edwards C, Postlethwaite I. (1998). Anti-Windup and Bumpless-Transfer Schemes. Automatica, 34(2): 199–210.

    CrossRef  MathSciNet  Google Scholar 

  13. Friedland B, Davis L. (1997). Feedback Control of Systems with Parasitic Effects. Proc. American Control Conference, Albuquerque, NM.

    Google Scholar 

  14. Gawronski W. (1999). Command Preprocessor for the Beam-Waveguide Antennas. TMO Progress Report, vol. 42-136. Available at http: //ipnpr.jpl.nasa.gov/progress_report/42-136/136A.pdf .

    Google Scholar 

  15. Gawronski W, Almassy W. (2002). Command Pre-Processor for Radiotelescopes and Microwave Antennas. IEEE Antennas and Propagation Magazine, 44(2).

    Google Scholar 

  16. Gawronski W, Brandt JJ, Ahlstrom, Jr., HG et al. (2000). Torque Bias Profile for Improved Tracking of the Deep Space Network Antennas. IEEE Antennas and Propagation Magazine, 42(6): 35–45.

    CrossRef  Google Scholar 

  17. Gawronski W, Parvin B. (1998). Radiotelescope Low Rate Tracking Using Dither. AIAA J. Guidance, Control, and Dynamics, 21: 349–352.

    CrossRef  Google Scholar 

  18. Glattfelder AH, Schaufelberger W. (2003). Control Systems with Input and Output Constraints, Springer, London.

    CrossRef  MATH  Google Scholar 

  19. Grimm G, Hatfield J, Postlethwaite I et al. (2001). Experimental Results in Optimal Linear Anti-Windup Compensation. Proc. 40 th IEEE Conf. on Decision and Control, Orlando, FL.

    Google Scholar 

  20. Hale LC, Slocum AH. (1994). Design of Anti-Backlash Transmission for Precision Position Control Systems. Precision Engineering, 16(4).

    Google Scholar 

  21. Hippe P. (2006). Windup in Control, Its Effects and Their Prevention, Springer, London.

    Google Scholar 

  22. Ku SS, Larsen G, Cetinkunt S. (1998). Fast Tool Servo Control for Ultra-Precision Machining at Extremely Low Feed Rates. Mechatronics, 8(4).

    Google Scholar 

  23. Lee S, Meerkov SM. (1983). Generalized Dither. International Journal of Control, 53(3): 741–747.

    CrossRef  Google Scholar 

  24. Mancini D, Brescia M, Cascote E et al. (1997). A Neural Variable Structure Controller for Telescopes Pointing and Tracking Improvement. Proc. SPIE, vol. 3112.

    Google Scholar 

  25. Mancini D, Brescia M, Cascote E et al. (1997). A Variable Structure Control Law for Telescopes Pointing and Tracking. Proc. SPIE, vol. 3086.

    Google Scholar 

  26. Mata-Jimenez MT, Brogliato B, Goswami A. (1997). On the Control of Mechanical Systems with Dynamics Backlash, Proc. 36 th Conf. Decision and Control, San Diego, CA.

    Google Scholar 

  27. Peng Y, Vrancic D, Hanus R. (1996). Anti-Windup, Bumpless, and Conditioned Transfer Techniques for PID Controllers. IEEE Control Systems Magazine, August, 48–57.

    Google Scholar 

  28. Southward SC, Radcliffe CJ, MacCluer CR. (1991). Robust Non-linear Stick-Slip Friction Compensation. J. Dynamic Systems, Measurement, and Control, 113: 639–645.

    CrossRef  MATH  Google Scholar 

  29. Stark AA, Chamberlin RA, Ingalls JG et al. (1997). Optical and Mechanical Design of the Antarctic Submillimeter Telescope and Remote Observatory. Rev. Sci. Instrum., 68(5).

    Google Scholar 

  30. Tickoo AK, Koul R, Kaul SK et al (1999) Drive-Control System for the TACTIC gamma-ray telescope. Experimental Astronomy, vol.9, no.2.

    Google Scholar 

  31. Trautt TA, Bayo E (1999) Inverse Dynamics of Flexible Manipulators with Coulomb Friction or Backlash and Non-Zero Initial Conditions. Dynamics and Control, vol.9, no.2.

    Google Scholar 

  32. Tyler SR. (1994). A Trajectory Preprocessor for Antenna Pointing. TDA Progress Report, 42-118, pp. 139–159. Available at: http: //ipnpr.jpl.nasa.gov/progress_report/42-118/118E. pdf.

    Google Scholar 

  33. Yeh TJ, Pan YC. (2000). Modeling and Identification of Opto-mechanical Coupling and Backlash Non-linearity in Optical Disk Drives. IEEE Trans. Consumer Electronics, 46(1).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gawronski, W. (2008). Non-Linear Control. In: Modeling and Control of Antennas and Telescopes. Mechanical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78793-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-78793-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-78792-3

  • Online ISBN: 978-0-387-78793-0

  • eBook Packages: EngineeringEngineering (R0)