Metabolite Measurements

Chapter

Metabolites are the products of enzyme-catalyzed reactions that occur naturally within living cells. Metabolites are synthesized by the cell for the purpose of performing a useful, if not indispensable, function in the maintenance and survival of the cells by, for example, contributing to its infrastructure or energy requirements. To do so, they have to be recognized and acted upon by enzymes, which will change the properties of the metabolites by means of a chemical reaction. Therefore, the properties of metabolites and their functionality as they interact within their natural environment determine the chemistry of life. Thus, it can be argued that the metabolome in a biological system represents the final result of the expression of multiple genes in a cell. The analysis of metabolites has been an important part of any biological sciences. A large number of technologies have been developed for the analysis of metabolites in order to study metabolism in great detail. Today, the accumulation and combination of knowledge on analytical biochemistry from the last 50 years is commonly called metabolomics, and large investments are made to its application toward developments of new technologies with greater sensitivity, comprehensiveness, robustness, and higher throughput.

References

  1. 1.
    Abdi H (2007) Bonferroni and Sidak corrections for multiple comparisons. In: Salkind NJ (ed.) Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA.Google Scholar
  2. 2.
    Aharoni A, de Vos CHR, Verhoeven HA, Maliepaard CA, Kruppa G, Bino RJ, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics 6:217–234.PubMedCrossRefGoogle Scholar
  3. 3.
    Arlt K, Brandt S, Kehr J (2001) Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J Chromatography A 926:319–325.CrossRefGoogle Scholar
  4. 4.
    Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 4:381–392.PubMedCrossRefGoogle Scholar
  5. 5.
    Birkemeyer C, Kopka J (2007) Design of metabolite recovery by variations of the metabolite profiling protocol. In: Nikolau BJ (ed.) Proceedings of the 3rd Congress on Plant Metabolomics. Springer, Dordrecht, The Netherlands.Google Scholar
  6. 6.
    Block E, Naganathan S, Putman D, Zhao SH (1992) Allium chemistry – HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsoms), leek, scallion, shallot, elephant (Great-Headed) garlic, chive, and Chinese chive – Uniquely high allyl to methyl ratios in some garlic samples. J Agric Food Chem 40:2418–2430.CrossRefGoogle Scholar
  7. 7.
    Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97.CrossRefGoogle Scholar
  8. 8.
    Böttcher C, van Roepenack-Lahaye E, Willscher E, Scheel D, Clemens S (2007) Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Anal Chem 79: 1507–1513.PubMedCrossRefGoogle Scholar
  9. 9.
    Broadhurst D, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196.CrossRefGoogle Scholar
  10. 10.
    Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336.PubMedCrossRefGoogle Scholar
  11. 11.
    Broeckling CD, Reddy IR, Duran AL, Zhao X, Sumner LW (2006) MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics. Anal Chem 78:4334–4341.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown M, Dunn WB, Ellis DI, Goodacre R, Handl J, Knowles JD, O’Hagan S, Spasic I, Kell DB (2004) A metabolome pipeline: from concept to data to knowledge. Metabolomics 1:39–51.CrossRefGoogle Scholar
  13. 13.
    Bruins AP, Covey TR, Henion JD (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59:2642–2646.CrossRefGoogle Scholar
  14. 14.
    Burrell MM, Earnshaw CJ, Clench MR (2006) Imaging matrix assisted laser desorption ionization mass spectrometry: a technique to map plant metabolites within tissues at high spatial resolution. J Exp Bot 58:757–763.PubMedCrossRefGoogle Scholar
  15. 15.
    Cairns AJ (1992) A reconsideration of fructan biosynthesis in storage roots of Asparagus-officinalis L. New Phytol 120:463–473.CrossRefGoogle Scholar
  16. 16.
    Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA 102:11458–14462.CrossRefGoogle Scholar
  17. 17.
    Clark JM, Daum KA, Kalivas JH (2003) Demonstrated potential of ion mobility spectrometry for detection of adulterated perfumes and plant speciation. Anal Lett 36:215–244.CrossRefGoogle Scholar
  18. 18.
    Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512.PubMedCrossRefGoogle Scholar
  19. 19.
    Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248.PubMedCrossRefGoogle Scholar
  20. 20.
    De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 361:168–173.CrossRefGoogle Scholar
  21. 21.
    Dunn WB, Ellis DI (2005) Metabolomics: Current analytical platforms and methodologies. Trends Anal Chem 24:285–294.CrossRefGoogle Scholar
  22. 22.
    Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293.PubMedCrossRefGoogle Scholar
  23. 23.
    Edwards EL, Rodrigues JA, Feffeira J, Goodall DM, Rauter AP, Justino J, Thomas-Oates J (2006) Capillary electrophoresis-mass spectrometry characterisation of secondary metabolites from the antihyperglycaemic plant Genista tenera. Electrophoresis 27:2164–2170.PubMedCrossRefGoogle Scholar
  24. 24.
    Eneroth P, Hellström K, Ryhage R (1964) Identification and quantification of neutral fecal steroids by gas-liquid chromatography and mass spectrometry: studies of human excretion during two dietary regimens. J Lipid Res 5:245–262.PubMedGoogle Scholar
  25. 25.
    Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional glenomics. Current Opin Plant Biol 8:174–182.CrossRefGoogle Scholar
  26. 26.
    Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2:155–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171.PubMedCrossRefGoogle Scholar
  28. 28.
    Fiehn O (2006) Metabolite Profiling in Arabidopsis. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis Protocols 2nd edition. Methods in Molecular Biology (323), Humana Press, Totowa NJ, pp. 439–447.Google Scholar
  29. 29.
    Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161.PubMedCrossRefGoogle Scholar
  30. 30.
    Friedman M, Dao L (1992) Distribution of glycoalkaloids in potato plants and commercial potato products. J Agricult Food Chem 40:419–423.CrossRefGoogle Scholar
  31. 31.
    Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: Comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325.PubMedCrossRefGoogle Scholar
  32. 32.
    Gibon Y, Usadel B, Blaesing OE, Kamlage B, Hoehne M, Trethewey RN, Stitt M (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biol 7:R76.1–R76.23.CrossRefGoogle Scholar
  33. 33.
    Gibon Y, Vigeolas H, Tiessen A, Geigenberger P, Stitt M (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J 30:221–235.PubMedCrossRefGoogle Scholar
  34. 34.
    Goffard N, Weiller G (2006) Extending MapMan: application to legume genome arrays. Bioinformatics 22:2958–2959.PubMedCrossRefGoogle Scholar
  35. 35.
    Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839.PubMedCrossRefGoogle Scholar
  36. 36.
    Goodacre R (2005) Metabolomics – the way forward. Metabolomics 1:1–2.CrossRefGoogle Scholar
  37. 37.
    Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22: 245–252.PubMedCrossRefGoogle Scholar
  38. 38.
    Griffin JL, Nicholls AW, Keun HC, Mortishire-Smith RJ, Nicholson JK, Kuehn T (2002) Metabolic profiling of rodent biological fluids via 1H NMR spectroscopy using a 1 mm microlitre probe. Analyst 127:582–584.PubMedCrossRefGoogle Scholar
  39. 39.
    Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kuhn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J 45:180–192.PubMedCrossRefGoogle Scholar
  40. 40.
    Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468.PubMedCrossRefGoogle Scholar
  41. 41.
    Hodisan T, Culea M, Cimpoiu C, Cot A (1998) Separation, identification and quantitative determination of free amino acids from plant extracts. J Pharmaceutical Biomed Anal 18:319–323.CrossRefGoogle Scholar
  42. 42.
    Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59:347–360.PubMedCrossRefGoogle Scholar
  43. 43.
    Ikonomou MG, Blades AT, Kebarle P (1990) Investigations of the electrospray interface for liquid chromatography/mass spectrometry. Anal Chem 62:957–967.CrossRefGoogle Scholar
  44. 44.
    Jacobs A, Lunde C, Bacic A, Tester M, Roessner U (2007) The impact of constitutive expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics 3: 307–317.CrossRefGoogle Scholar
  45. 45.
    Jewett MC, Hansen ME, Nielsen J (2007) Saccharomyces cerevisiae metabolomics: a driver for developing integrative analytical tools for discerning metabolic function. In: Jewett MC, Nielsen J (eds) Metabolomics. Springer, Heidelberg, Germany.Google Scholar
  46. 46.
    Junker BH, Klukas C, Schreiber F (2006) VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7: 109.PubMedCrossRefGoogle Scholar
  47. 47.
    Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159–4168.PubMedCrossRefGoogle Scholar
  48. 48.
    Katajamaa M, Miettinen J, Orešic M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636.PubMedCrossRefGoogle Scholar
  49. 49.
    Katona ZF, Sass P, Molnár-Perl I (1999) Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography–mass spectrometry. J Chromat A 847:91–102.CrossRefGoogle Scholar
  50. 50.
    Keurentjes JJB, Fu J, de Vos CHR, Lommen A, Hall RD, Bino RJ, van der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Gen 38:842–849.CrossRefGoogle Scholar
  51. 51.
    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638.PubMedCrossRefGoogle Scholar
  52. 52.
    Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265.PubMedCrossRefGoogle Scholar
  53. 53.
    Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Møller BL, Bak S (2006) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784.CrossRefGoogle Scholar
  54. 54.
    Lindon JC, Holmes E, Nicholson JK (2003) So what’s the deal with metabonomics? Anal Chem 75:384A–391A.PubMedCrossRefGoogle Scholar
  55. 55.
    Luedemann A, Weicht D, Selbig J, Kopka J (2004) PaVESy: pathway visualization and editing system. Bioinformatics 20:2841–2844.CrossRefGoogle Scholar
  56. 56.
    Matz LM, Dion HM, Hill HH (2002) Evaluation of capillary liquid chromatography-electrospray ionization ion mobility spectrometry with mass spectrometry detection. J Chromat A 946:59–68.CrossRefGoogle Scholar
  57. 57.
    Meyer R, Wagner KG (1985) Determination of nucleotide pools in plant-tissue by high-performance liquid-chromatography. Anal Biochem 148:269–276.PubMedCrossRefGoogle Scholar
  58. 58.
    Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CHR (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218.PubMedCrossRefGoogle Scholar
  59. 59.
    Molnár-Perl I, Füzfai Z (2005) Chromatographic, capillary electrophoretic and capillary electrochromatographic techniques in the analysis of flavonoids. J Chromat A 1073: 201–227.CrossRefGoogle Scholar
  60. 60.
    Oikawa A, Nakamura Y, Oqura T, Kimura A, Suzuki H, Sakurai N, Shinbo Y, Shibata D, Kanaya S, Ohta D (2006) Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol 142:398–413.PubMedCrossRefGoogle Scholar
  61. 61.
    Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440.PubMedCrossRefGoogle Scholar
  62. 62.
    Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378.PubMedCrossRefGoogle Scholar
  63. 63.
    Paley SM, Karp PD (2006) The pathway tools cellular overview diagram and Omics viewer. Nucleic Acid Res 34:3771–3778.PubMedCrossRefGoogle Scholar
  64. 64.
    Patrick JW (1997) Phloem unloading: Sieve element unloading and post-sieve element transport. Annual Rev Plant Physiol Plant Mol Biol 48:191–222.CrossRefGoogle Scholar
  65. 65.
    Ramautar R, Demirci A, de Jong GJ (2006) Capillary electrophoresis in metabolomics. Trends Anal Chem 25:455–466.CrossRefGoogle Scholar
  66. 66.
    Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Cambridge Phil Soc 80:27–43.CrossRefGoogle Scholar
  67. 67.
    Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Annals Bot 86:709–716.CrossRefGoogle Scholar
  68. 68.
    Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003a) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99.Google Scholar
  69. 69.
    Roessner-Tunali U, Lui J, Leisse A, Balbo I, Perez-Melis A, Willmitzer L, Fernie AR (2004) Flux analysis of organic and amino acid metabolism in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. Plant J 39:668–679.PubMedCrossRefGoogle Scholar
  70. 70.
    Roessner-Tunali U, Urbanczyk-Wochniak E, Czechowski T, Kolbe A, Willmitzer L, Fernie AR (2003b) De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol 133:683–692.Google Scholar
  71. 71.
    Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29.PubMedCrossRefGoogle Scholar
  72. 72.
    Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142:1087–1101.PubMedCrossRefGoogle Scholar
  73. 73.
    Roscher A, Emsley L, Raymond P, Roby C (1998) Unidirectional steady state rates of central metabolism enzymes measured simultaneously in a living plant tissue. J Biol Chem 273:25053–25061.PubMedCrossRefGoogle Scholar
  74. 74.
    Saito K, Dixon RA, Willmitzer L (2006) Plant Metabolomics, Berlin Heidelberg, Germany, Springer-Verlag.CrossRefGoogle Scholar
  75. 75.
    Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40:151–163.PubMedCrossRefGoogle Scholar
  76. 76.
    Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnol 24:447–454.CrossRefGoogle Scholar
  77. 77.
    Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Current Opin Plant Biol 7:309–317.CrossRefGoogle Scholar
  78. 78.
    Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol. Plant 132:199–208.Google Scholar
  79. 79.
    Smith, CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787.PubMedCrossRefGoogle Scholar
  80. 80.
    Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241.PubMedCrossRefGoogle Scholar
  81. 81.
    Stein SE (1999) An Integrated Method for Spectrum Extraction and compound identification from GC/MS data. J Amer Soc Mass Spectrom 10:770–781.CrossRefGoogle Scholar
  82. 82.
    Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144.CrossRefGoogle Scholar
  83. 83.
    Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN (2007) Systematic identification of conserved metabolites in GC/MS Data for metabolomics and biomarker discovery. Anal Chem 79:966–973.PubMedCrossRefGoogle Scholar
  84. 84.
    Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836.PubMedCrossRefGoogle Scholar
  85. 85.
    Tang KQ, Li FM, Shvartsburg AA, Strittmatter EF, Smith RD (2005) Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal Chem 77:6381–6388.PubMedCrossRefGoogle Scholar
  86. 86.
    Tarpley L, Duran AL, Kebrom TH, Sumner LW (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5:8.PubMedCrossRefGoogle Scholar
  87. 87.
    Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939.PubMedCrossRefGoogle Scholar
  88. 88.
    Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J-I, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235.PubMedCrossRefGoogle Scholar
  89. 89.
    Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and elctrospray ion mass trap spectrometry. Anal Biochem 301:298–307.PubMedCrossRefGoogle Scholar
  90. 90.
    Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201.PubMedCrossRefGoogle Scholar
  91. 91.
    Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Bläsing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR (2006) Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: Effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol Biol 60:773–792.PubMedCrossRefGoogle Scholar
  92. 92.
    Urbanczyk-Wochniak E, Sumner LW (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23:1418–1423.PubMedCrossRefGoogle Scholar
  93. 93.
    Valentine SJ, Kulchania M, Barnes CAS, Clemmer DE (2001) Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Internat J Mass Spectrom 212:97–109.CrossRefGoogle Scholar
  94. 94.
    Valentine SJ, Liu XY, Plasencia MD, Hilderbrand AE, Kurulugama RT, Koeniger SL, Clemmer DE (2005) Developing liquid chromatography ion mobility mass spectometry techniques. Exp Rev Proteomics 2:553–565.CrossRefGoogle Scholar
  95. 95.
    Verpoorte R (1998) Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discovery Today 3:232–238.CrossRefGoogle Scholar
  96. 96.
    Villas-Bôas SG, Roessner U, Hansen M, Smedsgaard J, Nielsen J (2007) Metabolome Analysis: An Introduction, New Jersey, NJ, USA, John Wiley & Sons, Inc.Google Scholar
  97. 97.
    Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang SY, Kuo YH, Chang HN, Kang PL, Tsay HS, Lin KF, Yang NS, Shyur LF (2002) Profiling and characterization antioxidant activities in Anoectochilus formosanus Hayata. J Agricult Food Chem 50:1859–1865.CrossRefGoogle Scholar
  99. 99.
    Williams BJ, Cameron CJ, Workman R, Broeckling CD, Sumner LW, Smith JT (2007) Amino acid profiling in plant cell cultures: An inter-laboratory comparison of CE-MS and GC-MS. Electrophoresis 28:1371–1379.PubMedCrossRefGoogle Scholar
  100. 100.
    Wurtele ES, Li J, Diao L, Zhang H, Foster CM, Fatland B, Dickerson J, Brown A, Cox Z, Cook D, Lee E-K, Hoffman H (2003) MetNet: software to build and model the biogenetic lattice of Arabidopsis. Comp Funct Genomics 4:239–245.PubMedCrossRefGoogle Scholar
  101. 101.
    Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88:4451–4459.CrossRefGoogle Scholar
  102. 102.
    Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhao Q, Stoyanova R, Du S, Sajda P, Brown TR (2006) HiRes – a tool for comprehensive assessment and interpretation of metabolomic data. Bioinformatics 22:2562–2564.PubMedCrossRefGoogle Scholar
  104. 104.
    Zywicki B, Catchpole G, Draper J, Fiehn O (2005) Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. Anal Biochem 336:178–186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Botany, Australian Centre for Plant Functional GenomicsThe University of Melbourne3010 Australia
  2. 2.Department of Plant Sciences, University of CaliforniaThe University of MelbourneDavisUSA

Personalised recommendations