Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shinoda, H., Nakajima, T., Ueno, K., & Koshida, N. Thermally induced ultrasonic emission from porous silicon, Nature, 400, 853–855, 26 (1999).

    Article  CAS  Google Scholar 

  2. Tsubaki, K., Yamanaka, H., Kitada, K., Komoda, T., & Koshida, N. Three-dimensional image sensing in air by thermally induced ultrasonic emitter based on nanocrystalline porous silicon, Jpn. J. Appl. Phys. 44, 4436–4439 (2005).

    Article  CAS  Google Scholar 

  3. Arnold, H. D. & Crandall, I. B. The thermophone as a precision source of sound. Phys. Rev. 10, 22–38 (1917).

    Article  Google Scholar 

  4. Amato, G., Benedetto, G., Barino, L., Brunetto, N., & Spagnolo, R. Photothermal and photoacoustic characterization of porous silicon. Opt. Eng. 36, 423–431 (1997).

    Article  Google Scholar 

  5. Calderon, A., Alvarado-Gil, J. J., & Gurevich, Y. G. Photothermal characterization of electrochemical etching processed n-type porous silicon. Phys. Rev. Lett. 79, 5022–5025 (1997).

    Article  Google Scholar 

  6. Holman, J. P. Heat Transfer (McGraw-Hill, New York, 1963).

    Google Scholar 

  7. McDonald, F. A. & Wetsel, G. C. Jr Generalized theory of the photoacoustic effect. J. Appl. Phys. 49, 2313–2322 (1978).

    Article  Google Scholar 

  8. Lang, W., Drost, A., Steiner, P., & Sandmaier, H. The thermal conductivity of porous silicon. Mater. Res. Soc. Symp. Proc. 358, 561–566 (1995).

    Google Scholar 

  9. Lang, W. in EMIS Data Review Ser. no. 18, Properties of Porous Silicon (ed. Canham, L.) 138–141 (IEE, London, 1997).

    Google Scholar 

  10. Kihara, T., Harada, T., & Koshida, N. Precise thermal characterization of confined nanocrystalline silicon by a 3ω Method, Jpn. J. Appl. Phys. 44, 4084–4087 (2005).

    Article  CAS  Google Scholar 

  11. Gesele, G., Linsmeier, J., Drach, V., Fricke, J., & Arens-Fischer, R. Temperature-dependent thermal conductivity of porous silicon, J. Phys. D: Appl. Phys., 30, 2911–2916 (1997).

    Article  Google Scholar 

  12. Manthey, W., Kroemer, N., & Magori, V. Ultrasonic transducers and transducer arrays for applications in air. Meas. Sci. Technol. 3, 249–261 (1992).

    Article  Google Scholar 

  13. Mo, J. H., Fowlkes, J. B., Robinson, A. L., & Carson, P. L. Crosstalk reduction with a micromachined diaphragm structure for integrated ultrasonic transducer arrays. IEEE Trans. Ultrasonics Ferroelectr. Freq. Contr. 39, 48–53 (1992).

    Article  Google Scholar 

  14. Goldberg, R. L. & Smith, S. W. Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans. Ultrasonics Ferroelectr. Freq. Contr. 39, 761–771 (1994).

    Article  Google Scholar 

  15. Soh, H. T., Atalar, A., & Khuri-Yakub, B. T. Surface micromachined capacitive ultrasonic transducers. IEEE Trans. Ultrasonics Ferroelectr Freq. Contr. 45, 678–690 (1998).

    Article  Google Scholar 

  16. Haller, M. I. & Khuri-Yakub, B. T. A surface micromachined electrostatic ultrasonic air transducer. IEEE Trans. Ultrasonics Ferroelectr Freq. Contr. 43, 1–6 (1998).

    Article  Google Scholar 

  17. Zhou, S. & Reynolds, P. Precompensated excitation waveforms to suppress harmonic generation in mems electrostatic transducers, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 51, 11, 1564–1574, (2004).

    Article  Google Scholar 

  18. Watabe, Y. , Honda, Y. , & Koshida, N. The characteristics of thermally induced ultrasonic emission from nanocrystalline porous silicon device under impulse operation, Jpn. J. Appl. Phys. 45, 3645–3647 (2006).

    Article  CAS  Google Scholar 

  19. Kihara, T., Harada, T., Kato, M., Nakano, K., Murakami, O., Kikusui, T., & Koshida, N. Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter, Appl. Phys. Lett. 88, 043902–043904, (2006).

    Article  CAS  Google Scholar 

  20. Nyby J. & Whitney, G. Neurosci. Biobehav. Rev. 2, 1 (1978).

    Article  Google Scholar 

  21. Sewell, G.D., Nature (London) 227, 410 (1970).

    Article  Google Scholar 

  22. Hirota, J., Shinoda, H., & Koshida, N. Generation of radiation pressure in thermally induced ultrasonic emitter based on nanocrystalline silicon, Jpn. J. Appl. Phys. 43, 4B, 2080–2082, (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shinoda*, H., Koshida, N. (2009). Ultrasonic Emission from Nanocrystalline Porous Silicon. In: Koshida, N. (eds) Device Applications of Silicon Nanocrystals and Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78689-6_11

Download citation

Publish with us

Policies and ethics