Skip to main content

Transformation of Uroporphyrinogen III into Protohaem

  • Chapter
Tetrapyrroles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Haem is an essential cofactor for virtually all organisms. It is made from the common tetrapyrrole progenitor, uroporphyrinogen III, by four sequential enzymes: uroporphyrinogen III decarboxylase, coproporphyrinogen III oxidase, protoporphyrinogen IX oxidase, and ferrochelatase. Each of the enzymes catalyses a remarkable reaction, with the first three required to carry out the same reaction at multiple sites on the substrate molecule. Now that the crystal structures are available for each of the proteins, the mechanisms of these essential enzymes are beginning to be elucidated. Despite the universality of haem synthesis however, there are differences between organisms. Firsdy in many bacteria there are anaerobic forms of the two oxidases, which appear to have completely different origins from the aerobic forms found in eukaryotes. Secondly, in certain bacteria some or all of these enzymes are missing completely; either they are pathogenic and can take up haem from their host, or there are alternative, as yet uncharacterized, enzymes. Finally, within the eukaryotes, the subcellular distribution of the enzymes differs depending on the organism, which has ramifications for the regulation of the biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Panek H, O’Brian MR. A whole genome view of prokaryotic haem biosynthesis. Microbiology 2002; 148:2273–2282.

    PubMed  CAS  Google Scholar 

  2. Rao AU, Carta LK, Lesuisse E et al. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci USA 2005; 102:4270–4275.

    Article  PubMed  CAS  Google Scholar 

  3. Labbe-Bois R. The ferrochelatase from Saccharomyces cerevisiae. Sequence, disruption, and expression of its structural gene HEM15. J Biol Chem 1990; 265:7278–7283.

    PubMed  CAS  Google Scholar 

  4. Chow KS, Singh DP, Amanda RW et al. Two different genes encode ferrochelatase in Arabidopsis: Mapping, expression and subcellular targeting of the precursor proteins. Plant J 1998; 15:531–541.

    Article  PubMed  CAS  Google Scholar 

  5. Santana MA, Tan FC, Smith AG. Molecular characterisation of coproporphyrinogen oxidase from Glycine max and Arabidopsis thaliana. Plant Physiol Biochem 2002; 40:289–298.

    Article  CAS  Google Scholar 

  6. Shoolingin-Jordan PM. The biosynthesis of coproporphyrinogen III. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 12. The Iron and Cobalt Pigments: Biosynthesis, Structure and Degradation. New York: Elsevier, 2003:33–74.

    Google Scholar 

  7. Whitby FG, Phillips JD, Kushner JP et al. Crystal structure of human uroporphyrinogen decarboxylase. EMBO J 1998; 17:2463–2471.

    Article  PubMed  CAS  Google Scholar 

  8. Martins BM, Grimm B, Mock HP et al. Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum—Implications for the catalytic mechanism. J Biol Chem 2001; 276:44108–44116.

    Article  PubMed  CAS  Google Scholar 

  9. Felix F, Brouillet N. Purification and properties of uroporphyrinogen decarboxylase from Saccharomyces cerevisiae. Yeast uroporphyrinogen decarboxylase. Eur J Biochem 1990; 188:393–403.

    Article  PubMed  CAS  Google Scholar 

  10. Luo J, Lim CK. Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 1993; 289:529–532.

    PubMed  CAS  Google Scholar 

  11. Phillips JD, Whitby FG, Kushner JP et al. Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase. EMBO J 2003; 22:6225–6233.

    Article  PubMed  CAS  Google Scholar 

  12. Hansson M, Hederstedt L. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol 1992; 174:8081–8093.

    PubMed  CAS  Google Scholar 

  13. Ishida T, Yu L, Akutsu H et al. A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris. Proc Natl Acad Sci USA 1998; 95:4853–4858.

    Article  PubMed  CAS  Google Scholar 

  14. Akhtar M. Coproporphyrinogen III and protoporphyrinogen IX oxidases. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 12. The Iron and Cobalt Pigments: Biosynthesis, Structrue and Degradation. New York: Elsevier, 2003:75–92.

    Google Scholar 

  15. Layer G, Verfurth K, Mahlitz E et al. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 2002; 277:34136–34142.

    Article  PubMed  CAS  Google Scholar 

  16. Layer G, Moser J, Heinz DW et al. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO J 2003; 22:6214–6224.

    Article  PubMed  CAS  Google Scholar 

  17. Lee DS, Flachsova E, Bodnarova M et al. Structural basis of hereditary coproporphyria. Proc Natl Acad Sci USA 2005; 102:14232–14237.

    Article  PubMed  CAS  Google Scholar 

  18. Kohno H, Furukawa T, Tokunaga R et al. Mouse coproporphyrinogen oxidase is a copper-containing enzyme: Expression in Escherichia coli and site-directed mutagenesis. Biochim Biophys Acta 1996; 1292:156–162.

    PubMed  Google Scholar 

  19. Breckau D, Mahlitz E, Sauerwald A et al. Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J Biol Chem 2003; 278:46625–46631.

    Article  PubMed  CAS  Google Scholar 

  20. Phillips JD, Whitby FG, Warby CA et al. Crystal structure of the oxygen-dependant coproporphyrinogen oxidase (Hem13p) of Saccharomyces cerevisiae. J Biol Chem 2004; 279:38960–38968.

    Article  PubMed  CAS  Google Scholar 

  21. Lash TD. The enigma of coproporphyrinogen oxidase: How does this unusual enzyme carry out oxidative decarboxylations to afford vinyl groups? Bioorg Med Chem Lett 2005; 15:4506–4509.

    Article  PubMed  CAS  Google Scholar 

  22. Lash TD, Kaprak TA, Shen L et al. Metabolism of analogues of coproporphyrinogen-III with modified side chains: Implications for binding at the active site of coproporphyrinogen oxidase. Bioorg Med Chem Lett 2002; 12:451–456.

    Article  PubMed  CAS  Google Scholar 

  23. Jones MA, He J, Lash TD. Kinetic studies of novel di-and tri-propionate substrates for the chicken red blood cell enzyme coproporphyrinogen oxidase. J Biochem (Tokyo) 2002; 131:201–205.

    CAS  Google Scholar 

  24. Narita S, Taketani S, Inokuchi H. Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen III oxidase. Mol Gen Genet 1999; 261:1012–1020.

    Article  PubMed  CAS  Google Scholar 

  25. Dailey TA, Dailey HA. Identification of an FAD superfamily containing protoporphyrinogen oxidases, monoamine oxidases, and phytoene desaturase. Expression and characterization of phytoene desaturase of Myxococcus xanthus. J Biol Chem 1998; 273:13658–13662.

    Article  PubMed  CAS  Google Scholar 

  26. Lermontova I, Kruse E, Mock HP et al. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Nad Acad Sci USA 1997; 94:8895–8900.

    Article  CAS  Google Scholar 

  27. Che FS, Watanabe N, Iwano M et al. Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Plant Physiol 2000; 124:59–70.

    Article  PubMed  CAS  Google Scholar 

  28. Arnould S, Takahashi M, Camadro JM. Acylation stabilizes a protease-resistant conformation of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci USA 1999; 96:14825–14830.

    Article  PubMed  CAS  Google Scholar 

  29. Koch M, Breithaupt C, Kiefersauer R et al. Crystal structure of protoporphyrinogen IX oxidase: A key enzyme in haem and chlorophyll biosynthesis. EMBO J 2004; 23:1720–1728.

    Article  PubMed  CAS  Google Scholar 

  30. Matringe M, Camadro JM, Labbe P et al. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 1989; 260:231–235.

    PubMed  CAS  Google Scholar 

  31. Smith AG, Marsh O, Elder GH. Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher-plants. Biochem J 1993; 292:503–508.

    PubMed  CAS  Google Scholar 

  32. Lee HJ, Duke MV, Duke SO. Cellular Localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves (relationship to mechanism of action of protoporphyrinogen oxidase-inhibiting herbicides). Plant Physiol 1993; 102:881–889.

    PubMed  CAS  Google Scholar 

  33. Fingar VH, Wieman TJ, McMahon KS et al. Photodynamic therapy using a protoporphyrinogen oxidase inhibitor. Cancer Res 1997; 57:4551–4556.

    PubMed  CAS  Google Scholar 

  34. Dailey HA. Terminal steps of haem biosynthesis. Biochem Soc Trans 2002; 30:590–595.

    Article  PubMed  CAS  Google Scholar 

  35. Sasarman A, Letowski J, Czaika G et al. Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Can J Microbiol 1993; 39:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  36. Dailey TA, Dailey HA, Meissner P et al. Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Arch Biochem Biophys 1995; 324:379–384.

    Article  PubMed  CAS  Google Scholar 

  37. Narita S, Taketani S, Inokuchi H. Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Mol Gen Genet 1999; 261:1012–1020.

    Article  PubMed  CAS  Google Scholar 

  38. Dailey HA, Dailey TA, Wu CK et al. Ferrochelatase at the millennium: Structures, mechanisms and [2Fe-2S] clusters. Cell Mol Life Sci 2000; (57):1909–1926.

    Google Scholar 

  39. Dailey H, Dailey T. Ferrochelatase. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 12. The Iron and Cobalt Pigments: Biosynthesis, Structure and Degradation. New York: Elsevier, 2003:93–121.

    Google Scholar 

  40. Al-Karadaghi S, Hansson M, Nikonov S et al. Crystal structure of ferrochelatase: The terminal enzyme in heme biosynthesis. Structure 1997; 5:1501–1510.

    Article  PubMed  CAS  Google Scholar 

  41. Wu CK, Dailey HA, Rose JP et al. The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat Struct Biol 2001; 8:156–160.

    Article  PubMed  CAS  Google Scholar 

  42. Grzybowska E, Gora M, Plochocka D et al. Saccharomyces cerevisiae ferrochelatase forms a homodimer. Arch Biochem Biophys 2002; 398:170–178.

    Article  PubMed  CAS  Google Scholar 

  43. Matringe M, Camadro JM, Joyard J et al. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem 1994; 269:15010–15015.

    PubMed  CAS  Google Scholar 

  44. Roper JM, Smith AG. Molecular localisation of ferrochelatase in higher plant chloroplasts. Eur J Biochem 1997; 246:32–37.

    Article  PubMed  CAS  Google Scholar 

  45. Cornah JE, Roper JM, Singh DP et al. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and nonphotosynthetic cells of pea (Pisum sativum L.). Biochem J 2002; 362:423–432.

    Article  PubMed  CAS  Google Scholar 

  46. Karlberg T, Lecerof D, Gora M et al. Metal binding to Saccharomyces cerevisiae ferrochelatase. Biochemistry 2002; 41:13499–13506.

    Article  PubMed  CAS  Google Scholar 

  47. Lecerof D, Fodje MN, Alvarez Leon R et al. Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites. J Biol Inorg Chem 2003; 8:452–458.

    PubMed  CAS  Google Scholar 

  48. Suzuki T, Masuda T, Singh DP et al. Two types of ferrochelatase in photosynthetic and nonphotosynthetic tissues of cucumber—Their difference in phylogeny, gene expression, and localization. J Biol Chem 2002; 277:4731–4737.

    Article  PubMed  CAS  Google Scholar 

  49. Singh DP, Cornah JE, Hadingham S et al. Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol Biol 2002; 50:773–788.

    Article  PubMed  CAS  Google Scholar 

  50. Jansson S. A guide to the LHC genes and their relatives in Arabidopsis. Trends Plant Sci 1999; 4:236–240.

    Article  PubMed  Google Scholar 

  51. Jansson S, Andersson J, Kim SJ et al. An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 2000; 42:345–351.

    Article  PubMed  CAS  Google Scholar 

  52. Cornah JE, Terry MJ, Smith AG. Green or red: What stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 2003; 8:224–230.

    Article  PubMed  CAS  Google Scholar 

  53. Walker CJ, Willows RD. Mechanism and regulation of Mg-chelatase. Biochem J 1997; 327:321–333.

    PubMed  CAS  Google Scholar 

  54. Schubert HL, Raux E, Wilson KS et al. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 1999; 38:10660–10669.

    Article  PubMed  CAS  Google Scholar 

  55. Nakahigashi K, Nishimura K, Miyamoto K et al. Photosensitivity of a protoporphyrin-accumulating, light-sensitive mutant (visA) of Escherichia coli K-12. Proc Natl Acad Sci USA 1991; 88:10520–10524.

    Article  PubMed  CAS  Google Scholar 

  56. Hu G, Yalpani N, Briggs SP et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 1998; 10:1095–1105.

    Article  PubMed  CAS  Google Scholar 

  57. Ferreira GC, Andrew TL, Karr SW et al. Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem 1988; 263:3835–3839.

    PubMed  CAS  Google Scholar 

  58. Smith AG, Cornah JE, Roper JM et al. Compartmentation of tetrapyrrole metabolism in higher plants. In: Bryant JA, Burrell MM, Kruger NJ, eds. Plant Carbohydrate Metabolism. Oxford: BIOS Scientific Publishers, 1999:281–294.

    Google Scholar 

  59. Watanabe N, Che FS, Iwano M et al. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 2001; 276:20474–20481.

    Article  PubMed  CAS  Google Scholar 

  60. Chow KS, Singh DP, Roper JM et al. A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 1997; 272:27565–27571.

    Article  PubMed  CAS  Google Scholar 

  61. Cleary SP, Tan FC, Nakrieko KA et al. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 2002; 277:5562–5569.

    Article  PubMed  CAS  Google Scholar 

  62. Jacobs JM, Jacobs NJ. Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids (effect of diphenyl ether herbicides). Plant Physiol 1993; 101:1181–1187.

    PubMed  CAS  Google Scholar 

  63. Harbin BM, Dailey HA. Orientation of ferrochelatase in bovine liver mitochondria. Biochemistry 1985; 24:366–370.

    Article  PubMed  CAS  Google Scholar 

  64. Proulx KL, Woodard SI, Dailey HA. In situ conversion of coproporphyrinogen to heme by murine mitochondria: Terminal steps of the heme biosynthetic pathway. Protein Sci 1993; 2:1092–1098.

    Article  PubMed  CAS  Google Scholar 

  65. Olsson U, Billberg A, Sjovall S et al. In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway. J Bacteriol 2002; 184:4018–4024.

    Article  PubMed  CAS  Google Scholar 

  66. Matringe M, Camadro JM, Block MA et al. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem 1992; 267:4646–4651.

    PubMed  CAS  Google Scholar 

  67. Hamza I, Chauhan S, Hassett R et al. The bacterial irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 1998; 273:21669–21674.

    Article  PubMed  CAS  Google Scholar 

  68. Lange H, Kispal G, Lill R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 1999; 274:18989–18996.

    Article  PubMed  CAS  Google Scholar 

  69. Yoon T, Cowan JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 2004; 279:25943–25946.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison G. Smith .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Cornah, J.E., Smith, A.G. (2009). Transformation of Uroporphyrinogen III into Protohaem. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_4

Download citation

Publish with us

Policies and ethics